State of the Art: MinXSS CubeSat Performance ... and CubIXSS future needs

Amir Caspi

Southwest Research Institute, Boulder

+ the MinXSS Team (including BCT!)

+ the CubIXSS Team

Overview

Motivation (science)

MinXSS overview

- MinXSS on-orbit performance
 - Including limitations and lessons learned

- CubIXSS proposed new CubeSat mission
 - And needs/desires for improvements

Our lecalistic

Spectrally-Resolved SXR Observations

• Crucial observational gap from ~0.2 to ~3 keV (~0.4 to ~6 nm)... Wavelength [nm]

Spectrally-Resolved SXR Observations

 Crucial observational gap from ~0.2 to ~3 keV (~0.4 to ~6 nm) with very few spectrally-resolved observations in previous decades

Spectrally-Resolved SXR Observations

- Crucial observational gap from ~0.2 to ~3 keV (~0.4 to ~6 nm) with very few spectrally-resolved observations in previous decades
- Rich with med- and high-T lines and continuum for diagnostics of coronal plasma temperatures
- Extremely sensitive to temperature, esp. high T
- Especially important for non-flaring corona, where there is little >3 keV (<0.4 nm) emission
 - Critical for understanding heating and for interpreting nonthermal observations
- Large photon fluxes

X123 Soft X-ray Spectrometer

- Amptek X123-SDD X-ray spectrometer package:
 - $-500 \mu m$ Silicon Drift Detector (SDD), 8 μm Be window
 - ~0.5-30 keV (~0.04-2.4 nm) @ ~0.15 keV FWHM
 - Up to ~200 kpcs, on-board pulse pileup rejection
 - All in one: TEC, HVPS, CPU included
 - $-7 \times 10 \times 2.5$ cm, ~300 g (with mods), ~2.5 W, \$11K + mods

Miniature X-ray Solar Spectrometer

MinXSS Science Team: Tom Woods (PI, LASP), Amir Caspi (SwRI), Phil Chamberlin (GSFC), Andrew Jones (LASP), Rick Kohnert (LASP), James Mason (LASP), Chris Moore (CU-APS), Scott Palo (CU-AES), Stan Solomon (NCAR-HAO)

MinXSS is NASA Science Mission Directorate's *first* CubeSat in space!

Led by CU Boulder's LASP, in collaboration with SwRI, NASA/GSFC, NCAR/HAO, and industry partners

Deployed: 16 May 2016

Days / Orbits: 267 / ~4200

LEO, ~400 km, ~1 yr lifetime

~10 W power consumption Power-positive w/ 35% margin

First light: 30 May 2016

>36,000 10 s spectra downlinked (>950,000 generated)

MinXSS SXR Observations

- Spectra cover 0.5–30 keV (~0.04–2.5 nm), although effective short limit is ~10 keV (~1.2 nm)
- Binned at ~0.03 keV (fixed in energy), ~0.15 keV FWHM
- Lines and continuum easily identifiable, fittable

MinXSS SXR Observations

- X123 spectra are downlinked sparsely normally
- Selected times (esp. flares) are downlinked at full cadence (as available)
 - Only ~3–5% capture with single-station UHF radio comms!

MinXSS CubeSat Design Overview

Acronyms: Command and Data Handling (CDH), Electrical Power System (EPS), Communications (COMM, Li-1 UHF Radio), Attitude Determination and Control System (ADCS, BCT), Solar Position Sensor (SPS), X-ray Sensor (XS), X123 is Amptek X-ray spectrometer.

Enabling Technology – precision ADCS

- Blue Canyon Technology (BCT) XACT ADCS specification
 - Mass: 850 g Size: 0.5 U
 - Power: < 2 W using 5 V and 12 V DC
 - Pointing Accuracy: < 25 arc-sec
 - Pointing Stability: < 10 arc-sec
 - Slew Rate: > 10 deg/sec
 - ADCS components: star tracker, coarse sun sensor, 3 reaction wheels, 3 torque rods, magnetometer, IMU, ADCS processor
- Caveat: MinXSS science doesn't actually need this high a level of performance...

Pointing Performance – Safe Mode

- MinXSS deployment → XACT booted to safe
- XACT autonomously placed spacecraft in safe attitude with arrays on sun and low total momentum
 - Per first pass telemetry
- Safe mode algorithms reliably find and track the sun
 - Uses XACT coarse sun sensors (CSS)
 - In Fine Pointing data (right),
 albedo induces 2–3° error on
 CSS sun measurements

Typical MinXSS Attitude Control Scenario

- Spacecraft +X axis is sun-pointed (nearly constant in inertial space)
- One rotation about +X axis per orbit (star tracker to zenith)
- Telemetry plots here are subject to dropouts, include occasional parsing errors due to imperfect radio communications and C&DH system limitations (not XACT)

Pointing Performance – Momentum Accuracy

- Nonzero commanded momentum bias
 - [0, 1.5, 1.5] Nms don't want
 wheel to stick at 0
 - Still have 0-crossings 4x / orbit
 unavoidable with 3 wheels
 - XACT can support 4 wheels
- Momentum is accurately provided
 - Sawtooth in plot is artifact of reconstructing inertial frame momentum from telemetry points with different quantizations
 - Some telemetry frame errors
 - Actual control error: ~0.2 mNms

Pointing Performance – Highly Accurate

- Two independent measures of attitude control error
 - XACT telemetry based on star tracker, high-fidelity sun model
 - MinXSS fine Sun Point Sensor
 (SPS) with 2 asec dark noise
- Total error is calculated here for an entire orbit
 - Wheel zero speed-crossings excluded
 - Torque rods firing at all times
 (could manage this disturbance if desired)
 - No effort made to optimize wheel or torque rod operation

Body	RMS Error (asec)			
Axis	Per XACT	Per SPS	Spec	
X	5.3	_	11	
Y	15.8	20.1	25	
Z	9.4	6.8	11*	

Pointing Performance – Highly Accurate

- X axis shows 5 asec performance across tracker boresight (spec: 11)
- Y axis shows 16–20 asec performance, mostly about tracker boresight (spec: 25)
- Z axis shows 7–9 asec performance
 - Very low inertia makes this axis more sensitive to torque disturbances
 - Axis also has an about-trackerboresight component
 - Long-term SPS data shows 7 asec performance over many days
- Significant unmeasured highfrequency motion is unlikely in general
 - In this data, two of three wheel speeds are often within tracker bandwidth
 - Same accuracy seen in data where 3rd wheel is also within tracker bandwidth

Body	RMS Error (asec)			
Axis	Per XACT	Per SPS	Spec	
X	5.3	_	11	
Y	15.8	20.1	25	
Z	9.4	6.8	11*	

Pointing Performance – Highly Accurate

- Torque rods on
 - Off improves accuracy
- No effort to optimize wheel speeds
- Two star trackers even better
 - ~5 asec in axes // to one boresight
 - ~3.5 asec in third (perp.) axis
- BCT currently executing NASA
 Tipping Point contract for next-gen XACT for accuracy of ~2 asec, or better, in all axes
 - Some trackers already show this accuracy in ground testing
 - Flight in early 2018

Body	RMS Error (asec)			
Axis	Per XACT	Per SPS	Spec	
X	5.3	_	11	
Y	15.8	20.1	25	
Z	9.4	6.8	11*	

MinXSS Communications

- AstroDev Lithium-1 radio (UHF)
 - Mass: 164 g Size: 0.15 U (radio only)
 - Power: < 4 W output (agile)
 - Input < 11 W
 - UHF (400–430, 430–450 MHz), VHF
 - AX.25 framing
 - \$5,000
- Low data rates (9600 bps)
- Not easily customizable
- Some hang-ups, requires power-cycle
- Single person, limited support available

MinXSS Communications

- Single station, custom built, double-yagi
- Poor data capture (high noise, poor on-board radio performance)
 - Second station in Parker, CO much better

MinXSS Communications

. "

- Data capture is low; limited by:
 - Data rate (9600 bps)
 - Single ground station
 - Poor signal and acquisition

- HK: ~1.5% capture
 - 3 sec cadence; 255 bytes
 - ~ 7.5 M generated, ~ 100 k rec.

- Science: ~3.6% capture
 - -10 sec cadence; 255 3584 by
 - ~1M generated, ~36k received
- ADCS: Not prioritized

Limitations / Solutions

- No spatial resolution!
- ⇒ Pinhole provides spatial resolution at low cost/mass/complexity (limited photon throughput NOT a problem)
- For < 0.5 keV, electronic noise dominates

Chandra HETG image for point sources (stars)

Multi-Order X-ray Spectral Imager

• Combination of pinhole imaging and transmission grating dispersion yields full-Sun "overlappograph" with 0th order and dispersed orders on same detector

Chandra HTG image for point sources (stars)

New Proposed Mission

CubIXSS:

CubeSat Imaging X-ray Solar Spectrometer

Goal: Improve physical understanding of thermal plasma processes and impulsive energy release in the solar corona, from quiescence to flares
 7 February 2017 KISS OptComm Workshop #2

CubIXSS: Spectroscopy & Imaging

- 6U CubeSat, proposed to H-TIDeS
- 2019 launch, LEO
 - Optimized for solar minimum
- Novel instrument suite includes:
 - Soft and hard X-ray spectrometers (spatially-integrated)
 - Soft X-ray imaging spectrograph (first solar imager on a CubeSat)

CubIXSS Instrument Summary

	Small Assembly for Solar Spectroscopy (SASS)	Multi-Order X-ray Spectral Imager (MOXSI)
Spectral range	SASS-S: ~0.5–30 keV SASS-H: ~5–100 keV	~1–55 Å (~0.22–12 keV)
Spectral res.	SASS-S: ~0.15 keV FWHM SASS-H: ~1 keV FWHM	~0.25 Å FWHM (~0.06 Å/pixel detector scale)
Spatial res.	N/A (spatially-integrated)	~25 arcsec FWHM (~6 arcsec/pixel detector scale)
Cadence	~1 s	~20 s

MOXSI for CubIXSS

- On-board image motion compensation by summing co-registered high-cadence images to relax pointing control and stability requirements
- Can exploit jitter for higher effective resolution

MOXSI for CubIXSS

- Dispersed spectrum is rich, but complex to analyze alone
- Non-dispersed images w/ coarse spectral information provide spatial kernel and initial spectrum for forward modeling
- MOXSI has 5 additional pinholes to create *Hinode*/XRT-like filtergrams to provide this spatial kernel and spectral seed
 - Filters optimized for temperature coverage and dynamic range

CubIXSS Trade-Offs

- Detector is 1500x2000 pixels (e2v CIS115)
- Baseline science requires $\sim 1000 \times 2000 = 2 \text{ Mpix} = 4 \text{ MB every } 20 \text{ sec}$
 - Even w/ 5x compression, ~2.4 GB/day
 - Can easily increase 10x with higher cadence, more pixels/supersampling, etc.
- X-band comms limited to ~10 Mbps for non-Earth-observers
 - Ka is still vaporware (and AFAIK only from Tethers)

CubIXSS Resource Budget

Subovetem	Manuf.	Orbit-Average Power (W)				
Subsystem		Draw	Duty	Avg.	Cont.	Total
[SNIP]	-	-	_	_	_	_
X-band Radio (Tx)	[redacted]	10.0	3%	0.3	20%	0.4
C hand Dadia (Dy. / Ty.)	[redacted]	0.8	100%	0.8	10%	0.9
S-band Radio (Rx / Tx)		15.0	3%	0.5	10%	0.6
ClabalStar Badia (Dv. / Tv.)	GlobalStar	0.5	100%	0.5	10%	0.6
GlobalStar Radio (Rx / Tx)		3.7	3%	0.1	10%	0.1
[SNIP]	_	_	_	-	_	-

- Baseline ConOps = 2.6 W orbit-average comm power
 - Assumes only 3% duty cycle for Tx (~5–6 ground passes per day)
 - Sufficient for 100% data capture with margin for baseline science, but...
 - More data = more science! (Higher cadence, higher resolution, etc.)
- More data = more Tx time = more power, more money
 - 10x more data = 10x time = 12.5 W OA comm power... + 10x ground-comm \$\$\$
 - Cannot realistically accept either one, given resource limitations
 - 100x more data = fuhgeddaboudit!
- Laser comms enables more science w/o more power, more money

Scaling Up to Larger SmallSats

- Better spatial resolution enables spectroscopy within sources
- ~7" achievable in 1.5m distance (e.g., SMEX or MoO)
- Requires more pixels to accommodate higher resolution with same FoV and spectral passband
- Higher cadence for better science
 - More dynamics
 - Sub-pixel sampling for super-resolution
- Need higher data rates! 50 Mbps OK, 1 Gbps enables!