

State of the Art: Lasercom Systems Engineering and Challenges

Emily Clements
KISS Workshop on Lasercom for Small Satellites

- Introduction
 - Motivation: Small Satellite Missions
 - Lasercom Advantages and Challenges
- Design of a Lasercom System
 - System Block Diagram
 - Link Performance Modeling
- Operations: Challenges and Opportunities
- Conclusion

Missions can benefit from lasercom

Satellite data are used to provide insight into many problems, such as...

Can relaxed data constraints enable new capabilities?

Utility for Small Satellite Missions

- Small satellites offer a cost-effective solution to global coverage w/ improved temporal resolution
- Data need metrics are: Volume of data downlinked, Timeliness/latency

Systems of small satellites can produce as much data as traditional satellites

RF and Lasercom Advantages & Challenges

Lasercom is more power-efficient than radio frequency (RF)

$$-P_{\text{received}} \propto \left(\frac{1}{\lambda}\right)^2$$
, where P_{received} = received power, λ = wavelength

Objective/Metric	Radio Frequency	Lasercom
Data volume, V	Large transmit power and aperture size [8] (Selva, 2012)	Higher downlink rates and lower SWAP (highly scalable for future needs)
	Spectrum availability, large aperture ground station availability	Cloud cover hinders access; Addressed by diversity techniques but large networks not available yet
Age of Information, AoI (latency)	Depends on data volume	Depends on ability to crosslink, depends on clear line of sight (e.g., cloud cover for downlinking, and ground-station diversity)
Variance data vol. & Aol, σ²(V) and σ²(Aol)	Link losses are more predictable	Dependent on atmospheric conditions, variable cloud cover, communication architecture (e.g., diversity techniques, crosslinks, etc.)

SmallSat* Lasercom Missions

SmallSat Lasercom Tech. Demos

NFIRE-TerraSAR-X^[9]

5.6 Gbps, LEO crosslink

NFIRE LCT^[10] 5.625 Gbps, LEO downlink

11 CD[11] 622 Mbps Lunar downlink

SOTA[12] 10 Mbps, LEO downlink

OCSD^[15] NODE,[15] FLARE

2005 2010 2015 **Future**

Missions that Advance **Supporting Tech.**

BRITE^[13] 0.0115° pointing

MINXSS^[14] 0.002° pointing, first flight of Blue Canyon wheels

Related: UAV lasercom:

Facebook Aquila^[17] Optical crosslinks between aircraft

Google Loon^[18] 155 Mbps crosslink, balloon lasercom system

- Introduction
 - Motivation: Small Satellite Missions
 - Lasercom Advantages and Challenges
- Design of a Lasercom System
 - System Block Diagram
 - Link Performance Modeling
- Operations: Challenges and Opportunities
- Conclusion

System Block Diagram

Communication system block diagram:

Adapted from Figure 2, Caplan, David O. "Laser communication transmitter and receiver design." Journal of Optical and Fiber Communications Reports 4.4-5 (2007): 225-362. [20]

- Additional system considerations
 - Pointing control
 - Onboard memory
 - Mechanical/thermal subsystems
 - System with multiple transmitters/receivers

Link Performance Modeling

 Received power is a function of gains and losses throughout the system:

Performance Uncertainty Sources

Figure credit: Ziegler, Clements;

Τſ

Link Performance Modeling

Nominal Link Budget for NODE (LEO, CubeSat, downlink-only)

	NODE	Units
Datarate	43	Mbps
P _{tx}	-7.0	dBW
G_tx	69.6	dB
L_tx	-1.5	dB
$L_{freespace}$	-258.2	dB
L_{atm}	-1.0	dB
G_rx	114.7	dB
L_rx	-3.0	dB
P _{rx}	-78.0	dBW
P _{req}	-84.2	dBW
Margin	6.2	dB

Table from Clements et al. (2016)^[15]

Alternative modeling approach estimates input uncertainties and creates CDFs of link margin

Can model deterministically or through Monte Carlo analysis

E.g., for NODE (MIT CubeSat lasercom downlink payload in development for resource-constrained systems)

- Introduction
 - Motivation: Small Satellite Missions
 - Lasercom Advantages and Challenges
- Design of a Lasercom System
 - System Block Diagram
 - Link Performance Modeling
- Operations: Challenges and Opportunities
- Conclusion

Constellation Opportunities

Problem: capacity saturation of ground stations for constellations of satellites with high datarate downlink needs

Solutions: (i) Many inexpensive ground terminals, (ii) Crosslinks

Visualization of Earth-observing small satellite mission using laser communication Figure credit: A. Kennedy

- Introduction
 - Motivation: Small Satellite Missions
 - Lasercom Advantages and Challenges
- Design of a Lasercom System
 - System Block Diagram
 - Link Performance Modeling
- Operations: Challenges and Opportunities
- Conclusion

Conclusion

- Small satellite communications depend on data volume, timeliness (latency), and reliability
- Lasercom can provide high data capabilities with powerand SWAP-efficient designs
- Primary challenge is that it is a relatively new technology in the space environment
 - Capabilities have been demonstrated (e.g., LLCD, TeSAT, etc.).
 - Potential for improvement is significant BUT experience is currently limited and operational uncertainties remain

Bibliography

- 1. https://www.planet.com/gallerv/lake-eleanor/
- 2. https://tropics.ll.mit.edu/CMS/tropics/Science-Objectives-and-Significance
- 3. Smith, David E., et al. "The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission." *Space science reviews* 150.1-4 (2010): 209-241.
- 4. Neumann, G. A., et al. "Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Reduced Data Record and Derived Products Software Interface Specification." *NASA Planetary Data Systems, LRO-L-LOLA-4-GRD-V1. 0, March* (2011).
- 5. https://www.nasa.gov/mission_pages/WISE/multimedia/gallerv/gallerv-index.html
- 6. Wright, Edward L., et al. "The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance." *The Astronomical Journal* 140.6 (2010): 1868.
- 7. Colton, Kyle, and Bryan Klofas. "Supporting the Flock: Building a Ground Station Network for Autonomy and Reliability." (2016).
- 8. Selva, Daniel, and David Krejci. "A survey and assessment of the capabilities of Cubesats for Earth observation." Acta Astronautica 74 (2012): 50-68.
- 9. Fields, Renny, et al. "NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2009.
- 10. Fields, R., et al. "5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station." Space Optical Systems and Applications (ICSOS), 2011 International Conference on. IEEE, 2011.
- 11. Boroson, Don M., et al. "Overview and results of the lunar laser communication demonstration." SPIE LASE. International Society for Optics and Photonics, 2014.
- 12. Takenaka, Hideki, et al. "In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links." SPIE LASE. International Society for Optics and Photonics, 2016.
- 13. Sarda, Karan, et al. "On-orbit performance of the bright target explorer (BRITE) nanosatellite astronomy constellation." (2014).
- 14. Mason, James P., et al. "Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat." Journal of Spacecraft and Rockets 53.2 (2016): 328-339.
- 15. Rose, Todd S., et al. "LEO to ground optical communications from a small satellite platform." SPIE LASE. International Society for Optics and Photonics, 2015.
- 16. Clements, Emily, et al. "Nanosatellite optical downlink experiment: design, simulation, and prototyping." Optical Engineering 55.11 (2016): 111610-111610.
- 17. D. Gershgorn, "Facebook will use these lasers to beam internet from the sky," http://www.popsci.com/facebook-will-use-these-lasers-beaminternet-sky (2 July 2015).
- 18. C. Metz, "Google laser-beams the film real genius 60 miles between balloons." http://www.wired.com/2016/02/google-shot-laser-60-milesjust-send-copyreal-genius/ (24 February 2016).
- 19. E. Buchen and D. DePasquale, "2014 Nano/Microsatellite Market Assessment," SpaceWorks Enterprises, 2014, Inc.(SEI) Atlanta, Georgia, http://www.sei.aero/eng/papers/uploads/archive/SpaceWorks_Nano_Microsatellite_Market_Assessment_January_2014.pdf (29 August 2015).
- 20. Caplan, David O. "Laser communication transmitter and receiver design." Journal of Optical and Fiber Communications Reports 4.4-5 (2007): 225-362.
- 21. Clements, Emily, and Kerri Cahoy. "Probabilistic Methods for Nanosatellite Engineering: A Lasercom Case Study." 2017 AIAA SciTech Forum, Grapevine, TX. AIAA. January 2017.

Backup / from old talks

Acknowledgements

Students (past and present)

Graduate Students

Inigo del Portillo Barrios

Kate Cantu

Ashley Carlton

Jim Clark

Emily Clements

Angie Crews

Karl Gantner

Christian Haughwout

Ayesha Hein

Kit Kennedy

Maxim Khatsenko

Ryan Kingsbury

Charlotte Lowey

Myron Lee

Zach Lee

Weston Marlow

Kat Riesing

Armen Samurkashian

Divya Shankar

Hyosang Yoon

Caleb Ziegler

Undergraduate Students

Raichelle Aniceto

Derek Barnes

Scarlett Koller

Bjarni Kristinsson

Rachel Morgan

Maya Nasr

Johannes Norheim

Elisheva Shuter

Rachel Weinberg

High School Students

Braden Oh + Project Selene team

Advisors

Professors

Kerri Cahoy

Mentors

Jamie Burnside

Dave Caplan (MITLL)

Bill Farr (NASA JPL)

Zach Hartwig (MIT Post-doc)

Jeff Mendenhall (MITLL)

Jonathan Twichell (MITLL)

PPM Diagrams

Credit: Laser Communication Transmitter and Receiver Design by Dave Caplan

Credit: Ryan Kingsbury