



## Laser Frequency Combs for Atmospheric Characterization

Dr. Kerri Cahoy MIT AeroAstro / EAPS

#### LFCs to characterize planet atmospheres

- Near
  - Solar system, including Earth (<50 AU)
  - LIDAR
  - Radio occultation
  - Laser occultation

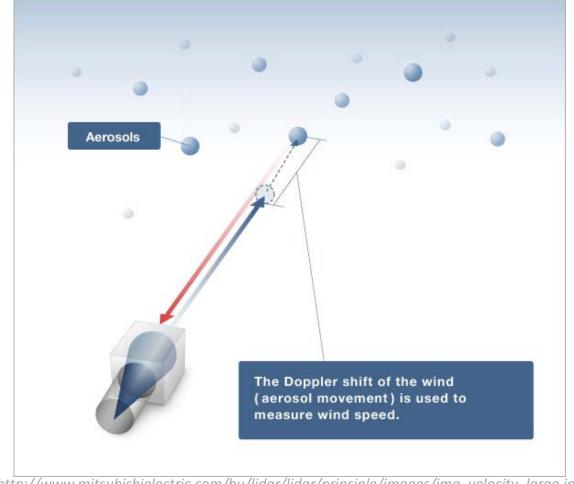
### • Far – talk for another time...

- Exoplanets
- Out to about 50 parsecs (50 x 2 x  $10^5$  AU)
- Direct imaging in the optical
  - Space telescope + coronagraph
- Radial velocity measurements
  - Space telescope + spectrograph







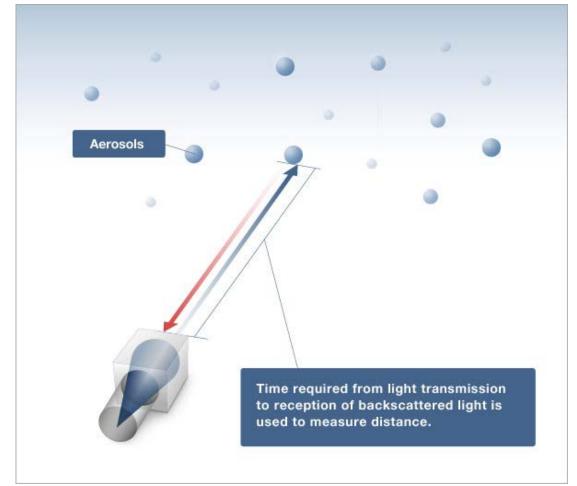



- Laser sounding
  - LIDAR
    - Coherent vs. direct
      - Coherent via optical heterodyne detection
    - Doppler LIDAR
- Occultation sounding
  - High vertical resolution
  - Radio occultation
    - LFC as frequency reference for custom RO
  - Laser occultation
- Passive microwave sounding, multispectral, mm-wave
- Imaging, visible, NIR, multispectral, spectrometry



#### **LIDAR - Wind**

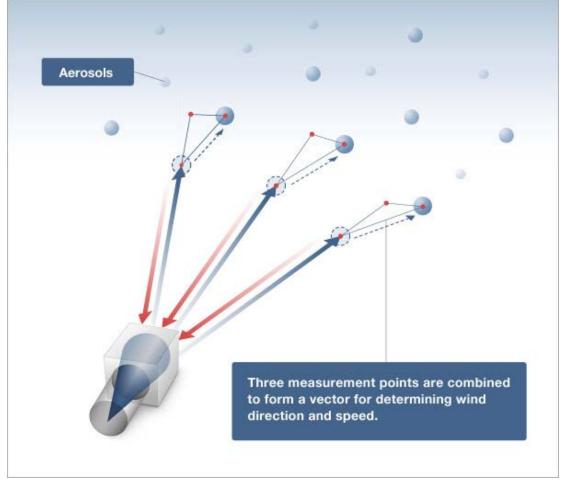





http://www.mitsubishielectric.com/bu/lidar/lidar/principle/images/img\_velocity\_large.jpg



#### **LIDAR - Range**






http://www.mitsubishielectric.com/bu/lidar/lidar/principle/images/img\_range\_large.jpg

# LIDAR – Wind direction and speed





http://www.mitsubishielectric.com/bu/lidar/lidar/principle/images/img\_winddir\_speed\_large.jpg

• LIDAR, substantial loss of signal, since measuring reflection

# oc-cul-ta-tion [ok-uhl-tey-shuhn]-noun

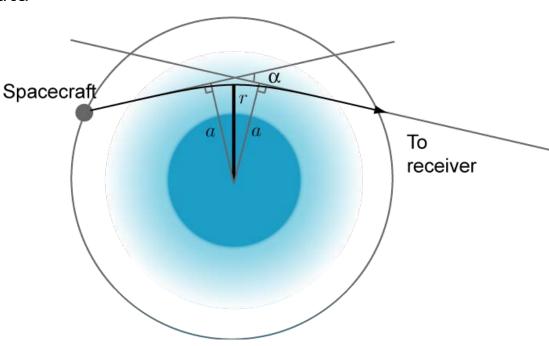
- 1. Astronomy. The passage of one celestial body in front of another, thus hiding the other from view: applied esp. to the moon's coming between an observer and a star or planet.
- 2. Disappearance from view or notice.
- 3. The act of blocking or hiding from view.
- 4. The resulting hidden or concealed state.

[Origin: 1375–1425; late ME < L occultātiōn- (s. of occultātiō) a hiding, equiv. to occultāt(us) (ptp. of occultāre to conceal, keep something hidden, freq. of occulere; see occult) + -iōn- -ion]

Dictionary.com Unabridged (v 1.1)

Based on the Random House Unabridged Dictionary, © Random House, Inc. 2006.




### **Occultation Concept**





- Titan occults a double star
  - Movie courtesy A. Bouchez
- Palomar 241-actuator adaptive optics system on the 5-m Hale telescope
- PHARO near-IR camera, K' filter (1.95 2.30 μm)

- What is Radio Occultation?
- Spacecraft transmitter + receiver
- Atmospheric gas + plasma refractive index
- Refractive index frequency shifts
- Invert to get thermophysical data
- Ways to do it:
  - Downlink
  - Uplink
  - Intersatellite link
- Design drivers:
  - Frequency stability
  - Signal to Noise
  - Attitude stability
  - Orbit tracking and geolocation





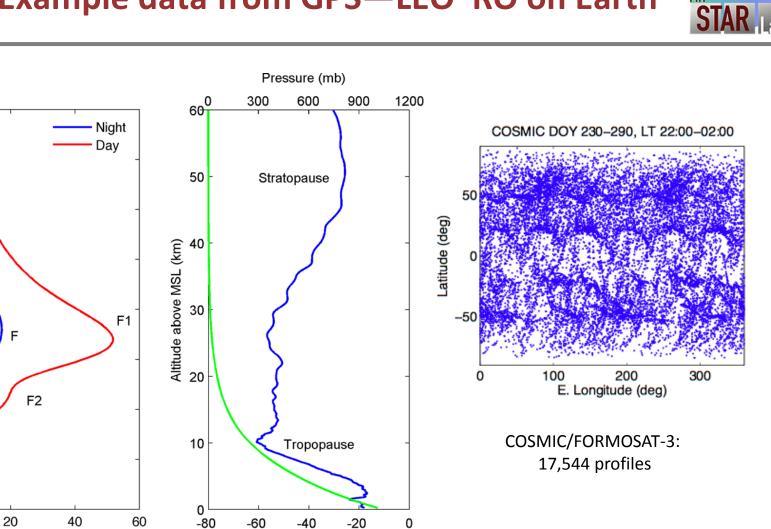
 $\cos\left[2\pi \left(f(t) + \Delta f(t) + \theta(t)\right)\right]$ 

 Abel transform relates the amount of "bending" α(a), to refractivity as a function of altitude, v(r)

$$\nu(r_0) = \exp\left[\frac{1}{\pi} \int_{a=a_1}^{a \to \infty} \ln\left(\frac{a}{a_1} + \sqrt{\left(\frac{a}{a_1}\right)^2 - 1}\right) \frac{d\alpha}{da} da\right]$$

- Yields atmospheric refractivity *profiles* 
  - Gas density, plasma density
  - Temperature, Pressure

#### Niels Henrik Abel, 1802-1829






# Example data from GPS—LEO RO on Earth

Electron density x 10<sup>4</sup> cm<sup>-3</sup>

Altitude above MSL (km)



• Temperature (blue) and pressure (green) profiles at 03:22:06 UT, 52.5° N latitude and 147.7° E longitude. Daytime electron density profile (red curve) at 19:53:1 UT, 36.8° N latitude and 71.5° W longitude. Nighttime electron density profile (blue curve) at 19:06:01 UT, 35.9° S latitude and 155.7° E longitude.

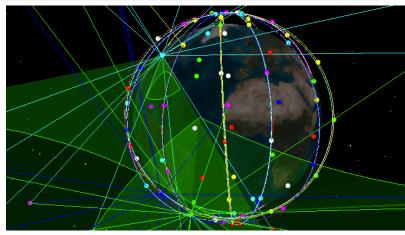
Temperature (deg C)

#### Solar system atmospheres



#### • Atmosphere + ionosphere

- Mercury
- Venus (CO2, N2)
- Earth (N2, O2)
  - Moon
- Mars (CO2, Ar)
- Jupiter (H2, He, CH4, NH3)
  - Io, Callista, Europa, Ganymede
- Saturn (H2, He, CH4, NH3)
  - Titan (N2, CH4)
  - Enceladus (H2O geysers)
- Uranus (H2, He, H2O, CH4, NH3)
  - Titania (CO2?)
- Neptune (H2, He, CH4)
  - Triton (N2, CH4, CO)
- Pluto (N2)


#### Radio Occultation Planetary Heritage (input from Withers et al. 2010)

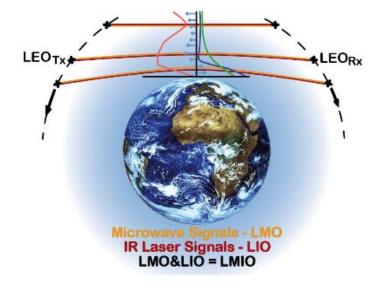
- Mercury
  - Mariner 10 (1973)
- Venus
  - Mariner 5 (1967), 10; Venera 9, 10, 15, 16;
     Pioneer Venus Orbiter (1978); Magellan (1989); Venus Express (2005)
- Moon
  - Pioneer 7; Luna 19, 22; SMART-1, SELENE
- Mars
  - Mariner 4, 6, 7, 9 (1964, 1969, 1971; Mars 2, 4, 5, 6; Viking 1, 2 (1975); Mars Global Surveyor (1996); Mars Express (2003); Mars Reconnaissance Orbiter (current)
- Jupiter, Io, Europa, Ganymede, Callisto
  - Pioneer 10, 11, Voyager 1, 2 (1977); Galileo (1989)
- Saturn, rings, Titan
  - Pioneer 11; Voyager 1, 2 (1977); Cassini (1997)
- Uranus, Neptune, Triton
  - Voyager 2 (1977)
- Pluto
  - New Horizons (2015 uplink)
- IP/Halley
  - Vega 1, Vega 2, Giotto


#### What are the technologies that we need?



- Radio science instrument
  - Software defined radio rx/tx
    - Multi-channel
    - Multi-frequency
    - Open or closed loop (trade)
  - Stable oscillator/clock
    - Across multiple frequencies
  - Onboard processing
  - Navigation and ranging
- Antennas
  - Larger aperture
  - Radiating efficiency
    - Broadband multi-frequency intersatellite
  - Beamwidth
  - Or maybe we can do this with lasers...



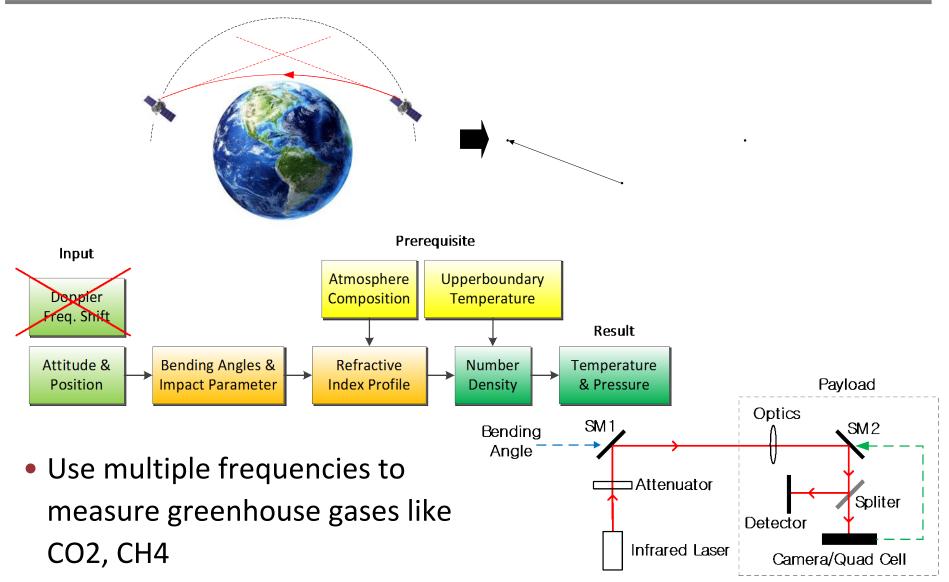

GNSS RO simulation, I. Beerer



Mars Global Surveyor's Ultra-stable Oscillator



- Intersatellite LEO IR laser link
  - Range of wavelengths from 2 2.5 um (best)
- Transmitted signal is attenuated by atmosphere
  - Attenuation at different bands → differential transmission → thermodynamic variables composition information
  - Based on ACCURATE mission (Kirchengast, et al.): IR lasers at a range of frequencies
- Transmitted signal also bent by atmosphere
  - Measure bending angle based on position of beam on detector
- Use wavefront control to improve signal measurements?
  - May need improvements with adaptive optics




Schweitzer, et al



### **Laser Occultation**





## **Global XCO2 map**



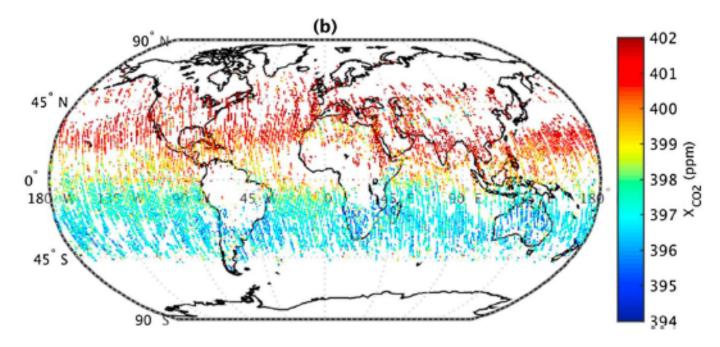
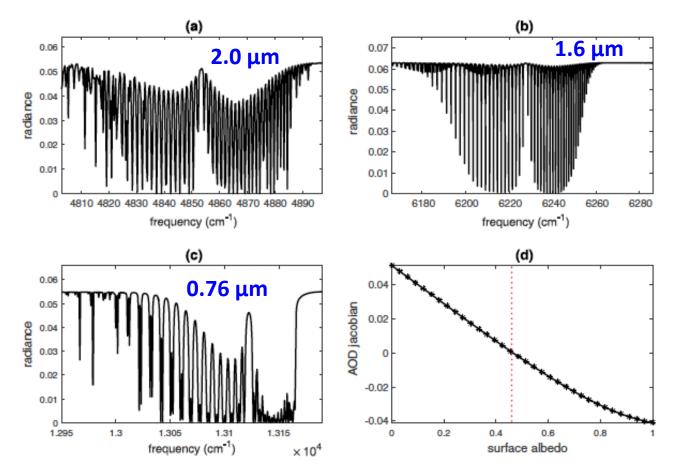
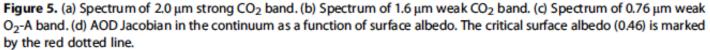



Figure 1. Global map of OCO 2 X<sub>CO2</sub> retrieval in April 2015. (a) All the data points are displayed. In OCO 2 retrievals, data qualities are labeled with flags 0 and 1: 0, passed internal quality check; 1, failed internal quality check. (b) Only the data points labeled with "flag 0" are displayed.


http://onlinelibrary.wiley.com.libproxy.mit.edu/doi/10.1002/2015EA000143/epdf


- Need 1 ppm accuracy
- Go from column to vertically resolved
- Help manage issues with aerosols (layers)











http://onlinelibrary.wiley.com.libproxy.mit.edu/doi/10.1002/2015EA000143/epdf



## **Species of interest**



| Gas             | Center                        | Transition                              | Band interval       |
|-----------------|-------------------------------|-----------------------------------------|---------------------|
|                 | v (cm <sup>-1</sup> ) (λ(μm)) |                                         | (cm <sup>-1</sup> ) |
| $H_2O$          | -                             | pure rotational                         | 0-1000              |
|                 | 1594.8 (6.3)                  | v <sub>2</sub> ; P, R                   | 640-2800            |
|                 | continuum*                    | far wings of the strong                 | 200-1200            |
|                 |                               | lines; water vapor                      |                     |
|                 |                               | dimmers (H <sub>2</sub> O) <sub>2</sub> |                     |
| CO <sub>2</sub> | 667 (15)                      | v2; P, R, Q                             | 540-800             |
|                 | 961 (10.4)                    | overtone and combination                | 850-1250            |
|                 | 1063.8 (9.4)                  | v <sub>3</sub> ; P, R                   |                     |
|                 | 2349 (4.3)                    | overtone and combination                | 2100-2400           |
| <b>O</b> 3      | 1110 (9.01)                   | v <sub>1</sub> ; P, R                   | 950-1200            |
|                 | 1043 (9.59)                   | v3; P, R                                | 600-800             |
|                 | 705 (14.2)                    | v <sub>2</sub> ; P, R                   | 600-800             |
| CH4             | 1306.2 (7.6)                  | V4                                      | 950-1650            |
| $N_2O$          | 1285.6 (7.9)                  | V1                                      | 1200-1350           |
|                 | 588.8 (17.0)                  | V2                                      | 520-660             |
|                 | 2223.5 (4.5)                  | V3                                      | 2120-2270           |
| CFCs            |                               |                                         | 700-1300            |

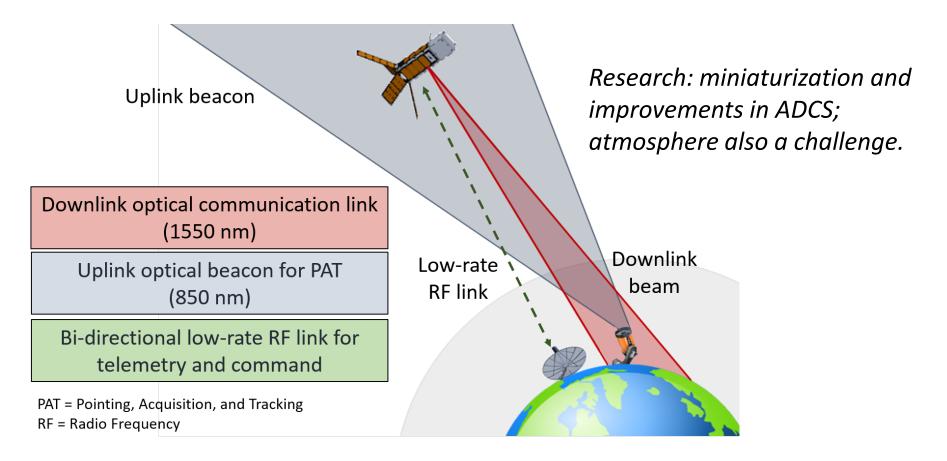


## **Species of interest**



| Species   | Wavenumber (cm^-1) | Wavelength (nm)                      |
|-----------|--------------------|--------------------------------------|
| Abs H2O-1 | 4204.8403          | 2378.211605                          |
| Ref H2O-1 | 4226.07            | 2366.264638                          |
| Abs H2O-2 | 4475.803           | 2234.235957                          |
| Ref H2O-2 | 4770.15            | 2096.370135                          |
| Abs H2O-3 | 4747.0548          | 2106.56932 shortest wavelength pair  |
| Ref H2O-3 | 4731.03            | 2113.704627 shortest wavelength pair |
|           |                    |                                      |
| Abs 12CO2 | 4771.6214          | 2095.723688 shortest wavelength pair |
| Ref 12CO2 | 4770.15            | 2096.370135 shortest wavelength pair |
| Abs 13CO2 | 4723.415           | 2117.112301                          |
| Ref 13CO2 | 4731.03            | 2113.704627                          |
|           |                    |                                      |
| Abs CH4   | 4344.1635          | 2301.939142                          |
| Ref CH4   | 4322.93            | 2313.245877                          |
| Abs O3    | 4029.1096          | 2481.937945                          |
| Ref O3    | 4037.21            | 2476.958097                          |
| Abs N2O   | 4710.3408          | 2122.988638 shortest wavelength pair |
| Ref N2O   | 4731.03            | 2113.704627 shortest wavelength pair |

# Platform development: Lasercom




- Need relatively inexpensive small satellites with precise pointing control for laser occultation
- Very similar to demands for laser communication
- MIT developing optical transmitter for CubeSats: NODE
  - Nanosatellite Optical Downlink Experiment
- Also higher-powered bus with propulsion: KitCube
  - Lasercom and green monopropellant, NASA CubeQuest Lunar Derby
- Also applying to crosslinks: FLARE
  - Free-space lasercom and radiation experiment

## **Laser Communications**



- 1. Ground station sends uplink beacon to satellite
- 2. Beacon detector on satellite provides fine attitude knowledge
- 3. Fine-steering mirror corrects downlink pointing



## **NODE and FLARE**



4.1 mm

120 mm

Sparrow Detector

Sparrow Module

Batteries

BCT XACT ADCS

Receive Aperture

• NODE:

• FLARE:

- Nanosatellite optical downlink experiment
- Transmitter module in commercial CubeSat
- Flight planned late 2016
- Busek Fuel Tank Erbium Doped - Free-space Lasercom And Radiation Fiber Amplifier 4 Busek Monoprop hrusters Avionics and Radio Window **UHF Monopo** Receiver Electronic and FPGA Power Management and

82.59 mm

Intersatellite crosslinks

Experiment

- UNP-9

Radiation spectrometer

Transmit Aperture





- RF vs. FSO the same principles apply
  - Determine signal power at receiver which is then compared to noise → SNR
  - Receiver, modulation and coding design demand a certain SNR to achieve desired bit error rate
- Common metric for RF sensitivity:  $E_b/N_0$
- Common metric for FSO RX sensitivity: photons per bit







$$P_{rx} = P_{tx} \cdot G_{tx} \cdot S \cdot \tau_{tx} \cdot \tau_{atm} \cdot G_{rx} \cdot \tau_{rx}$$

 $P_{rr}$  = received optical power [W]  $P_{tx}$  = transmitted optical power [W]  $G_{tx}$  = transmitter gain =  $\left(\frac{8}{\theta^2}\right)$  where  $\theta_{tx}$  is divergent tx angle  $S = \text{ free space loss} = \left(\frac{\lambda}{\Lambda \pi I}\right)^2 \text{ where } L \text{ [m] is path length}$  $G_{rx}$  = receiver gain =  $\left(\frac{\pi D_{rx}}{2}\right)^2$  where  $D_{rx}$  [m] is receive aperture  $\tau_{tx}$  = transmitter optical efficiency  $\tau_{atm}$  = atmospheric transmission factor  $\tau_{rr}$  = receiver optical efficiency



## **Optical vs. RF**



|                       | Radio                                                   |          | Optical<br>"Lasercom" |                                               |
|-----------------------|---------------------------------------------------------|----------|-----------------------|-----------------------------------------------|
| Space<br>Segment      | Radio modem,<br>patch antenna                           |          |                       | Laser transmitter,<br>steering system         |
| Spectrum<br>/ License | ~Megahertz<br>Heavily regulated                         |          |                       | Terahertz available<br>Unregulated            |
| Ground<br>Segment     | Large dish, facility<br>(several meters)<br>\$1M and up | Pinnin - | a:                    | 30 cm amateur<br>stronomy telescope<br>\$100k |

# Lasercom offers **superior link efficiency** (less power per bit) due to its ability to better direct signal to receiver.

## Narrow laser beam: speed and security



Downlink beam

> Uplink beacon

Optical systems provide INCREASED SECURITY over RF systems Areas outside of optical footprint can't receive signal

Ground Station



Optical footprints span several city blocks. RF footprints often span fractions of continents

# **Comparison of RF and Optical**



<sup>c</sup>e

pt

- TX aperture is 30 cm
- Link range is 700 km (LEO)
- RX aperture is 30 cm Receiver sensitivities typical for 1 Gbps link

|                                | Optical     | RF (10 GHz) | Units |                  |
|--------------------------------|-------------|-------------|-------|------------------|
|                                | λ = 1000 nm | λ = 3 cm    |       | All system       |
| TX Power (P <sub>t</sub> )     | 0           | 0           | dBW   | parameters ar    |
| TX Losses (L <sub>t</sub> )    | -2          | 0           | dB    | matched, exce    |
| TX Aperture (G <sub>t</sub> )  | 119         | 30          | dB    | wavelength       |
| Path Loss (L <sub>path</sub> ) | -259        | -169        | dB    |                  |
| RX Aperture (G <sub>r</sub> )  | 119         | 30          | dB    |                  |
| RX Power (P <sub>r</sub> )     | -23         | -109        | dBW   |                  |
| RX Sensitivity                 | -97         | -114        | dBW   |                  |
| Margin                         | 74          | 5           | dB    | Optical system h |

Adapted from: Caplan, D. "Free-Space Laser Communications", 2008

Optical system has a **70 dB advantage** 

# Link Budget – Laser Occultation



| Source: ACCURATE LEO | Source: ACCURATE LEO-LEO Infrared Laser Occultation Initial Assessment: Requirements, Payload Characteristics, Scientific Performance Analysis, and Breadboarding Specifications |                    |                                                                                                |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------|--|--|
|                      | Author: Hyosang Yoon                                                                                                                                                             | Date: 2015. 2. 11. |                                                                                                |  |  |
|                      |                                                                                                                                                                                  |                    |                                                                                                |  |  |
|                      | Constants                                                                                                                                                                        | Value              | Notes                                                                                          |  |  |
|                      | Tx Power (W)                                                                                                                                                                     | 1.0000             |                                                                                                |  |  |
|                      | Tx Beamwidth (mrad)                                                                                                                                                              | 3.0000             | At e^-2, Full Angle                                                                            |  |  |
|                      | Tx Pulse Duration (ms)                                                                                                                                                           | 1.5000             | 2000 nm                                                                                        |  |  |
|                      | Rx Mirror Diameter (m)                                                                                                                                                           | 0.3600             |                                                                                                |  |  |
|                      | Rx Integration Time (ms)                                                                                                                                                         | 2.0000             |                                                                                                |  |  |
|                      | Rx Detector NEP (W)                                                                                                                                                              | 8.00E-13           | Noise-Equivalent Power                                                                         |  |  |
|                      | Rx Optical Loss (%)                                                                                                                                                              | 35                 | Assumption                                                                                     |  |  |
|                      | Distance between Tx and Rx                                                                                                                                                       |                    |                                                                                                |  |  |
|                      | (km)                                                                                                                                                                             | 6,200.00           | Assume 6000 km for 600km sun sync. orbit                                                       |  |  |
|                      | Sampling Frequency (Hz)                                                                                                                                                          | 50                 | Raw sampling frequency                                                                         |  |  |
|                      | Filtered Sampling Frequency (Hz)                                                                                                                                                 | .) 2               | Filtered sampling frequency                                                                    |  |  |
|                      | Typical set/rise vel, Vscan (km/s)                                                                                                                                               | 0.3                | Empirically modeled, Vscan[km/s] = {0.3, 2.8, 3, 3.15, 3.2, 3.2} at z[km] = {0, 25, 30, 35, 40 |  |  |
|                      | Required Vertical Resolution (km)                                                                                                                                                | 1) 2               | dz_target                                                                                      |  |  |

#### Source: ACCURATE LEO-LEO Infrared Laser Occultation Initial Assessment: Requirements, Payload Characteristics, Scientific Performance Analysis, and Breadboarding Specifications

#### Assumptions from ACCURATE SSO counter-rotating orbits

# Link Budget – Laser Occultation

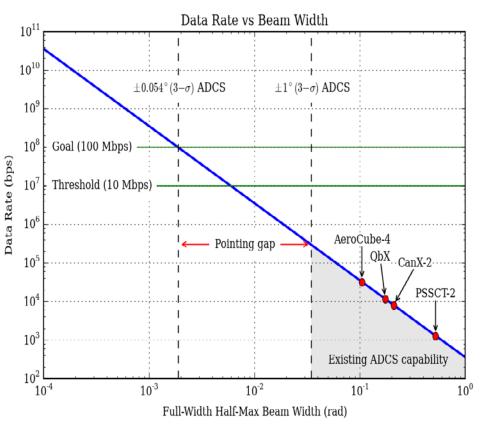


| Best Case<br>Pointing (25 |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Notes and Equations                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.0000                    |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1018                    | pi * d^2 / 4                                                                                                                                                                                                                                                                                                                                                                                                             |
| 271716349                 | (beamwidth * dist)^2 * pi / 4                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.49E-10                  | 2 * Ar / Abeam, 2 is from the ratio of the intensity of the Gaussian beam near the optical axis (Wm-                                                                                                                                                                                                                                                                                                                     |
| -91.2539                  |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -1.2494                   | t_pulse / t_integration                                                                                                                                                                                                                                                                                                                                                                                                  |
| -1.8709                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -94.37416271              |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -120.9691001              |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26.59                     | Basic SNR at detector                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.989700043               | G_ds = 10*log(sqrt(f_s,raw / f_s, filt))                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.3                       | dz_filt = V_scan / (0.5 * f_s,filt)                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.119543705               |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37.70418117               | SNR basic = SNR                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | Vary from 0.21 to 7.97 dB according to Altitude. To be simulated numerically with accurate atmosphere                                                                                                                                                                                                                                                                                                                    |
|                           | model                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29.73418117               |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | Designed maximum of 13 dB for detection                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | 100 * 10^ (-SNR / 10)                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | 100 * 10^ (-SNR / 10)                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                         | [%] = {2, 1, 0.5, 0.3, 0.2, 0} at z[km] = {0, 5, 10, 20, 30, 120}                                                                                                                                                                                                                                                                                                                                                        |
|                           | Pointing (25<br>μrad)           0.0000           0.1018           271716349           7.49E-10           -91.2539           -1.2494           -1.8709           -94.37416271           -120.9691001           26.59           6.989700043           0.3           4.119543705           37.70418117           7.97           29.73418117           13           16.73418117           0.1063119009           2.121201294 |

#### Assumptions from ACCURATE SSO counter-rotating orbits

# Link Budget – Laser Occultation




| Differential log-transmission   |              |                                                                                               |
|---------------------------------|--------------|-----------------------------------------------------------------------------------------------|
| error (%)                       | 2.917327056  | E = sqrt(E^2 +)                                                                               |
| E_delT_abs (dB)                 | 0.1266965967 | Differential log-transmission error in unit dB                                                |
| SNR Difference (dB)             | 13           | Differential log-transmission between the absorption and reference channel                    |
| Diff. log-trans. relative error |              |                                                                                               |
| (%)                             | 0.9745892054 | 100*E_deIT_abs / (SNR diff)                                                                   |
| Species absorption coefficient  |              |                                                                                               |
| error (%)                       |              | E_absC = g_AbelTr * E_delT_rel, g_AbelTr: error gain factor from Abelian transformation       |
| Absorption cross section error  |              | Empirically modeled to be <0.4-0.8% within 5-10 km and 0.4%< within 10-40km (with increasing  |
| (%)                             | 0.8          | error upwards) E_sigmaAbs[%] = {0.8, 0.8, 0.4, 0.4, 1.6, 8} at [km] = {0, 5, 10, 40, 60, 120} |
| Species profile retrieval error |              |                                                                                               |
| (%)                             | 2.564449404  | E_Sp = sqrt(E_absC^2 + E_sigmaAbs^2)                                                          |

#### Assumptions from ACCURATE SSO counter-rotating orbits

# Identification of Pointing Gap



- Consider end-to-end laser link:
  - Realistic laser transmitter (1 W)
  - Inexpensive RX aperture (30 cm)
  - COTS detector (APD)
- CubeSat ADCS today:
  - Flight demos +/- 1 deg (3- $\sigma$ )
  - Typically sensing-limited
  - Although, slew can be actuator-limited...
  - Insufficient for lasercom goals
- Add *fine-stage* to bridge gap
  - Beacon: improves sensing
  - FSM: improves actuation



Curve above assumes:  $0.5*FWHM = 3-\sigma$  pointing

A >10X improvement in pointing is needed to make lasercom competitive with RF.

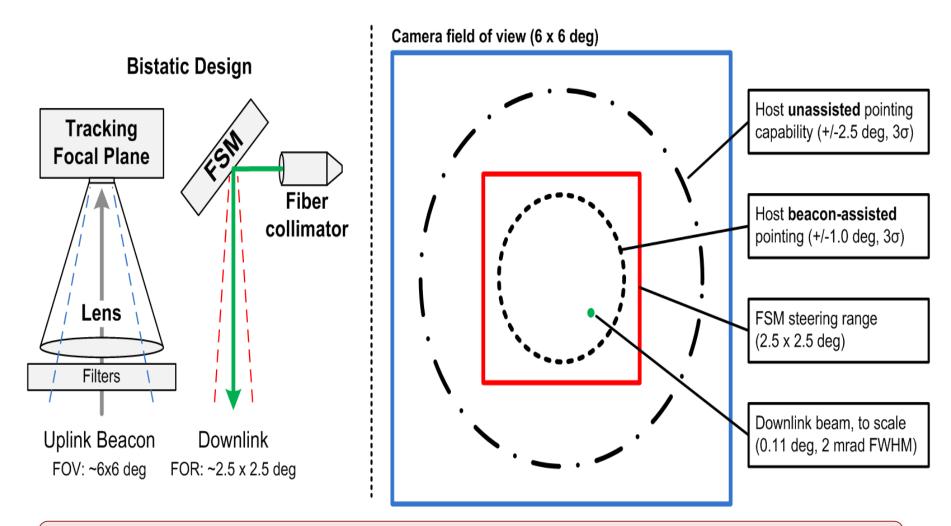


## **NODE Key Parameters**



| Link Paramete      | rs                                           |                                                    |
|--------------------|----------------------------------------------|----------------------------------------------------|
| Data rate          | 10-100 Mbps (stretch)                        |                                                    |
| Bit error rate     | 10^-4 without coding                         | Conservative baseline for FEC (7% RS planned)      |
| Path length        | <1000 km                                     | ~20 deg elev @ 400 km LEO                          |
| Space Segmer       | nt Parameters                                |                                                    |
| Size, Weight       | 10 x 10 x 5 cm, 600 g                        | CubeSat mid-stack payload: 0.5 U                   |
| Power              | <b>10 W (transmit mode)</b> ,<br>1 W (idle)  | Entire lasercom payload                            |
| Downlink<br>Beam   | 1550 nm,<br><b>0.12° (2.1 mrad) FWHM</b>     | Radiometric constraint for 10 Mbps                 |
| Beacon<br>Detector | CMOS camera (silicon)                        | Ground-station-relative pointing knowledge         |
| Ground Segme       | ent Parameters                               |                                                    |
| Apertures          | <b>RX: 30 cm</b> , beacon: four at 2 cm each | Mount capable of tracking LEO object               |
| Comm.<br>Detector  | Commodity APD/TIA Module                     | Operating at 300 photons/bit (no exotic detectors) |
| Pointing           | Coarse: TLE, Fine: tip/tilt FSM              | Detector size demands fine stage                   |

# Pointing, Acquisition and Tracking

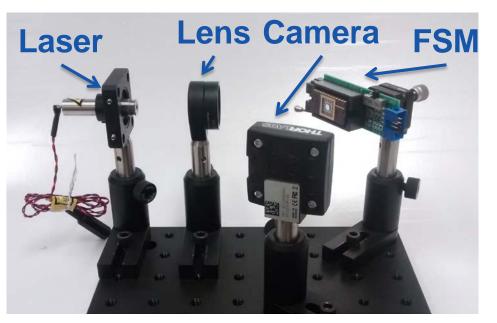







## **PAT / Stage Handoff**






Camera FOV oversized to avoid time-wasting search. Fine stage oversized to avoid saturation.

## **Two-stage CubeSat ADCS**

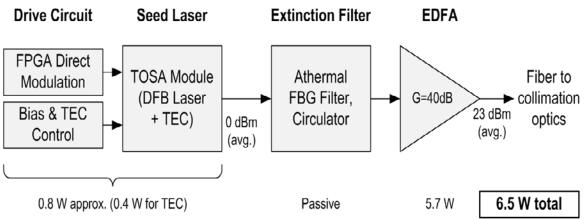



- Characterization of MEMS fast steering mirror
- Thermal properties, hysteresis, linearity
- Hardware tests in progress...
- 6 DOF simulation in progress
- On-orbit calibration scheme in progress...



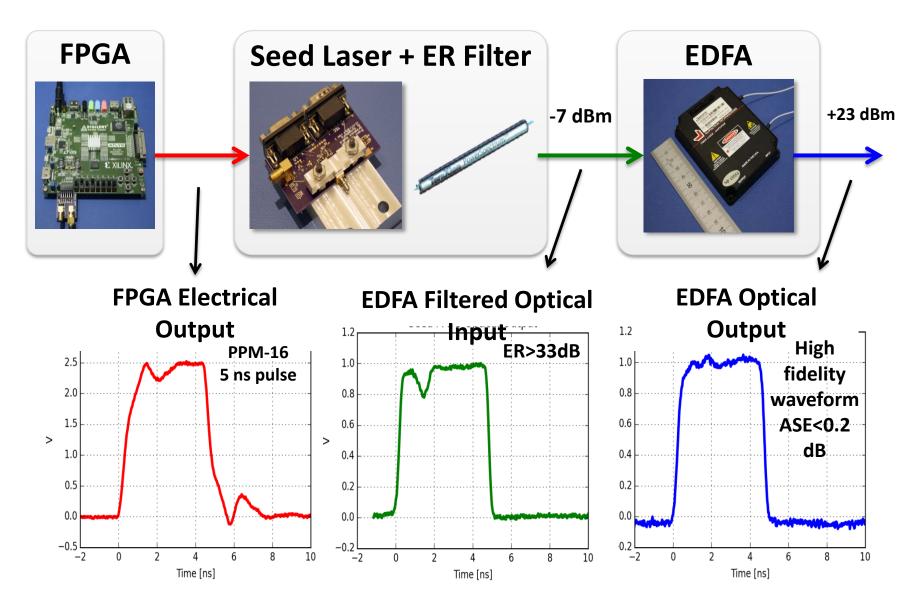
Pointing Req.: ±0.03°

| <b>Repeatability Test</b> | RMS Error         |  |
|---------------------------|-------------------|--|
| Best device               | 0.0007° (12 µrad) |  |
| Worst device              | 0.0039° (67 µrad) |  |






## **MOPA Approach**




- MOPA: Master Oscillator Power Amplifier
  - Ample modulation bandwidth (>GHz)
- Two wavelength options:
  - Best Efficiency: YDFA (2X efficiency)
  - Best Availability: EDFA (telecom)
- External modulators are power hungry  $\rightarrow$  direct modulation of seed is desirable
- Design challenges:
  - Achieving sufficient extinction ratio (ER)
  - Need ER > 27 dB for PPM-16
  - Thermal stabilization of seed laser



### Measured Electrical/Optical Waveforms





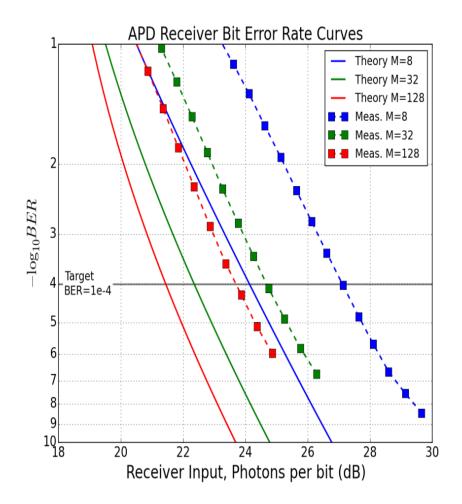
### **Transmitter Power Budget**



|                     | Value  | Notes                                      |
|---------------------|--------|--------------------------------------------|
| EDFA                | 5.7 W  | Manuf. worst case, (we measured: 4.1<br>W) |
| Seed laser TEC      | 0.4 W  | Peak power, over temp                      |
| Seed laser DC bias  | 0.2 W  | Worst case                                 |
| Seed laser AC drive | 0.01 W | 50 mA, 1/16 duty                           |
| FPGA logic          | 0.2 W  | Only TXer related portion of FPGA          |
| Total:              | 6.51 W |                                            |
| Margin:             | 1.49 W | 8 W budgeted                               |

#### **Transmitter meets power budget with 18% margin**

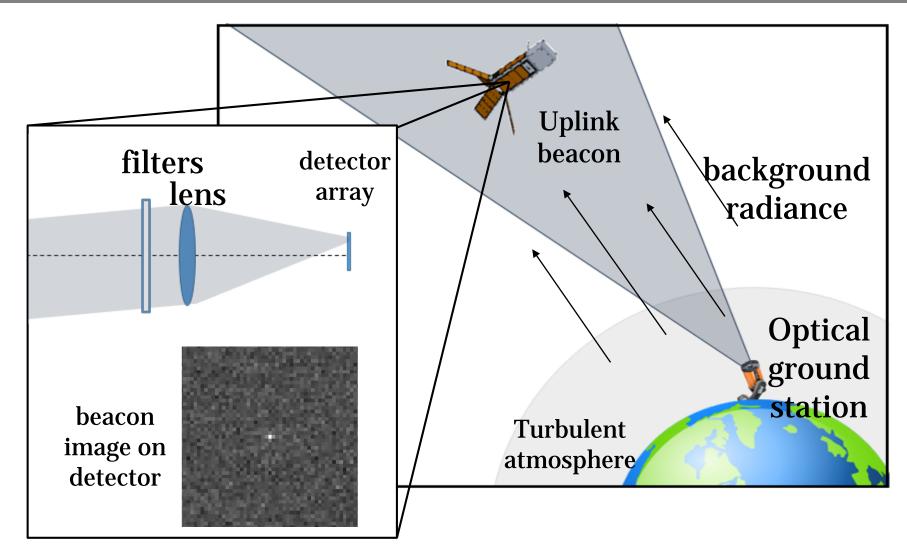
## **Flight Receiver BER Curves**




• Theoretical sensitivity from link budget

| Sensitivity vs. Theory at<br>BER=1e-4 |          |          |          |          |          |  |
|---------------------------------------|----------|----------|----------|----------|----------|--|
| Μ                                     | 8        | 16       | 32       | 64       | 128      |  |
| dB                                    | 2.9<br>8 | 2.5<br>7 | 2.3<br>2 | 2.2<br>4 | 2.2<br>4 |  |

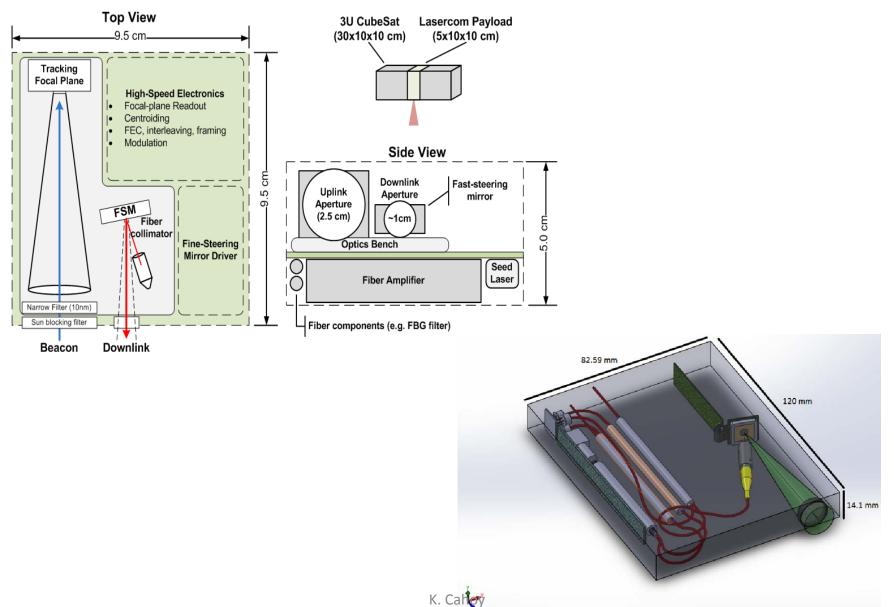
System is currently 2.2- 3.0 dB


from theory (mode dependent).



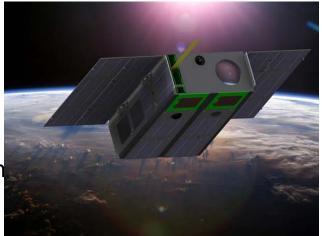


### **Beacon system**





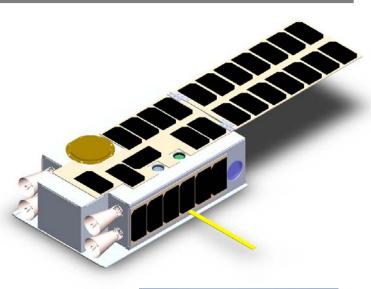




### **"0.5U" Physical Layout**







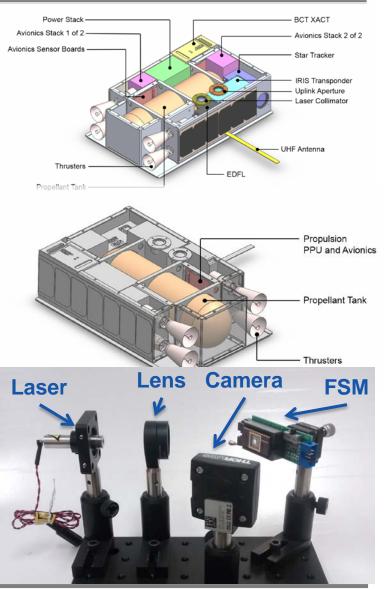

- (1) open-loop mirror characterization
  - Illuminate mirror with internal laser
  - Measure mirror deflections to a precision of 10 nm with wavefront sensor
  - Repeat experiment frequently over mission
- (2) Image correction on an external object.



- Requires that a star or extended object (Earth, moon, etc.) stay within the field of view of the external aperture for at least 5 consecutive minutes.
- During this time, a closed-loop algorithm will run to improve the image quality of that external object within the control authority of the mirror.



- NASA's CubeQuest challenge competition inspires development of new small satellite technology
  - Advanced communications and propulsion
  - For exploration and for commercialization
- 3 winners <u>get a free ride</u> on Exploration Mission 1, as the Space Launch System rockets the unmanned Orion crew capsule toward the Moon
  - And \$5M cash prizes for technology demonstrations
    - Achieve lunar orbit (propulsion)
    - Best burst data rate (communications)
    - Most data sent over time






# About our Spacecraft Technology



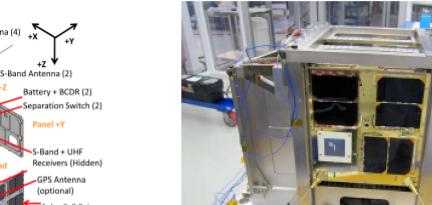
- KitCube has four 0.5N green monopropellant thrusters to get to the Moon
  - Green monopropellant is new, less toxic
  - Trailblazing CubeSat Δv capability of 300 m/s
- Two star trackers and three reaction wheels help us maneuver accurately
  - Goal of 10 arcsec pointing
- A MEMS fine steering mirror provides a new way to achieve precise pointing
  - So we can point our 1W laser beam at the telescope on Earth, with data rates >1 Mbps
- A new CubeSat X-band radio supports twoway ranging
  - So we can talk to KitCube and figure out where we are on the way to the Moon
  - So we can meet the navigation artifact requirement for the competition prizes

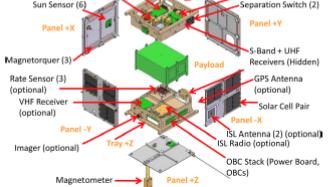


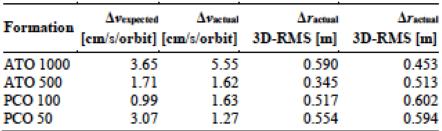
# **Technology Development: Formation**

- CanX-4 and CanX-5 have demonstrated relative navigation
  - using carrier-phase differential
    - Newman et al., SmallSat 2015
    - Separations from 1 km to 50 m
    - ATO: along track orbit

VHF Antenna


(optional) **GPS Receiver** (optional)


Reaction Wheels (3)


- PCO: projected circular orbit

PCO 100 1.63 0.99 PCO 50 3.07 1.27UHF Antenna (4)

ATO 500 1.71







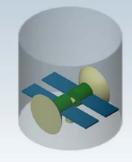


#### Table 5: Summary of formation control results

### I've always wanted to do this...

# JPL Planetary Science Summer School 2001 First-year graduate student

#### MATR/IX

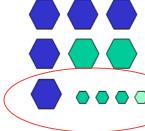

Mars Atmospheric Twin-Satellite Radio / Ionosphere eXperiment

IMMER SCHOOL FOR PLANETARY SCIENCE










#### Mission Ops

- Pre-Launch Cost \$7.75M } \$24.9M
- Post-Launch Cost \$17.1M  $\int$

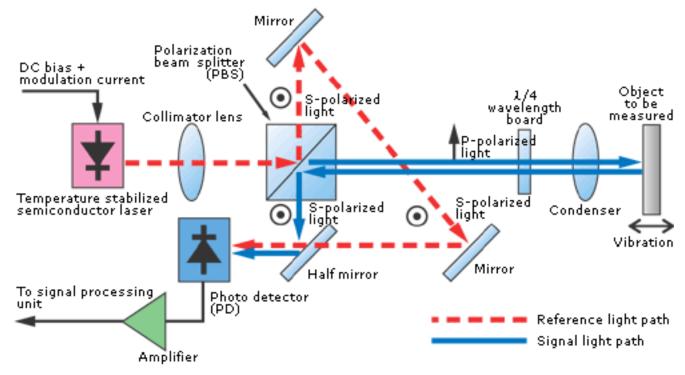
#### DSN

Total data volume/week 1428000 kb
Down-Link data rate 88kbps
Tracking 6.225 hrs/week
DSN cost share \$4.25M



I actually wanted to do what would later become "CubeSats" but Team-X shot me down... with their trade studies. They still are working on their "TeamXc". Sigh.








- Frequency calibration useful for several atmospheric spectroscopy applications
  - Radio passive, active, laser
- Focus today on laser occultation concept
- Future work needed:
  - Study absorption and instrument performance at different wavelengths
  - Detector sensitivity and noise trade vs. strength of absorption feature
  - Mission design, links, pointing control
  - Opportunities for commercial partnership (e.g., Skybox, Spire)
  - Opportunities for planetary exploration
    - CubeSat sounders

### **Optical heterodyne detection**





http://www.iti.iwatsu.co.jp/en/products/st/st-3761\_top\_e.html

- Apply a frequency modulation to the injected current of the semiconductor laser
- Divide into reference light and signal light, using polarization beam splitter.
- The signal light reflected from object interferes with reference light
- The difference between the frequencies can be measured as a beat
- If the object moves, beat signal changes