Self-referencing electro-optic frequency combs

Scott Papp & Scott Diddams

National Institute of Standards and Technology Boulder, CO USA

NIST

Funding: NIST, DARPA (QuASAR, PULSE, DODOS) AFOSR, NASA, NRC

Different combs for different jobs

Features: Wide mode spacing, tunable, mWs per mode, COTS + scalable fabrication, retrace Challenges: Low pulse energy, narrow BW, electro-optical noise

Features: Large pulse energy, wide BW, many examples self-referenced Challenges: Narrow mode spacing, modelocking, power per line

Self-referencing EOM & Kerr combs

f-2f detection gives carrier-offset frequency:

f₀ = CW laser – **19,340** x 10 GHz

Outline

Electro-optic modulation (EOM) comb

Kerr microcomb

- Bit on possible applications
- EOM combs, two challenges:
 - 1. Spectral broadening
 - 2. Electro-optic noise
- EOM/microcombsin practice
- Future perspective

EOM/Kerr comb applications

Molecular identification / spectroscopy

Geodesy/ranging. Grace-FO mission

Quantum-based systems: Comb is a classical phase reference. Microcombs at quantum interface

Cavity

Atoms, ions

Microwave systems: ADMX dark matter

Building an EOM comb line-by-line

NIST

Self-referencing an EOM comb

Supercontinuum at 10's of GHz

Power (dB)

Optical power (10 dB/div)

Frequency (GHz)

NIST

Electro-optic noise

Putting EOM combs to work

What might future systems look like?

NIST

Conclusion

NIST

Chip-scale combs are an interesting new direction for experimenters.

- EOM combs are based on mature technology.
- Chip-integrated systems on the horizon.
- Basic physics of microcombs remains interesting.
 Will be a driver of applications in future.

Thank you!

NIS

Scott Diddams EOM comb & Katja Beha Daniel Cole Pascal Del'Haye Aurélien Coillet Erin Lamb William Loh Joe Becker Adam Green Fred Baynes Travis Briles Jordan Stone High rep rate Yi-Chen Chuang SiN combs

microcomb self-referencing <100 Hz linewidth chip-scale lasers

Collaborators

Kerry Vahala, Caltech Kartik Srinivasan, NIST John Bowers, UCSB