Chip-Based Optical Frequency Combs

Alexander Gaeta
Department of Applied Physics and Applied Mathematics

Michal Lipson Department of Electrical Engineering

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science KISS Frequency Comb Workshop Cal Tech, Nov. 2-5, 2015

Chip-Based Comb Generation

- Origin of combs can be traced to <u>four-wave mixing (FWM)</u>
- Requires small anomalous group-velocity dispersion

- Origin of combs can be traced to <u>four-wave mixing (FWM)</u>
- Requires small anomalous group-velocity dispersion

Microresonator-Based Parametric Combs

silica μ**-toroids** Del' Haye *et al.*, Nature (2007). Del' Haye *et al.*, PRL (2008).

silica μ-spheres Agha *et al.*, Opt. Express (2009).

CaF₂, MgF₂, & quartz Savchenkov *et al.*, PRL (2008). Liang *et al.*, Opt. Lett. (2011). Papp & Diddams, PRA (2011). Herr *et. al.*, Nat. Phot. (2012).

high-index glass µrings Razzari *et al.*, Nature Photon. (2010). Pasquazi *et al.*, Opt. Express (2013).

Silicon Griffith *et al.*, (2014).

silica disks & rods Li *et al.*, PRL (2012) Papp, *et al.*, PRX (2013)

Si nitride Levy *et al.*, Nat. Photon. (2010). Ferdous *et al.*, Nat Photon. (2012). Herr *et al.*, Nat. Photon. (2012).

diamond Hausmann *et al.*, Nat. Photon. (2013).

Al nitride Jung *et al.*, Opt. Lett. (2013).

Microresonator-Based Parametric Combs

silica μ**-toroids** Del' Haye *et al.*, Nature (2007). Del' Haye *et al.*, PRL (2008).

silica μ-spheres Agha *et al.*, Opt. Express (2009).

CaF₂, MgF₂, & quartz Savchenkov *et al.*, PRL (2008). Liang *et al.*, Opt. Lett. (2011). Papp & Diddams, PRA (2011). Herr *et. al.*, Nat. Phot. (2012).

high-index glass µrings Razzari *et al.*, Nature Photon. (2010).

Pasquazi et al., Opt. Express (2013).

silicon

Griffith et al., (2014).

Si fintifice Levy *et al.*, Nat. Photon. (2010) Ferdous *et al.*, Nat Photon. (2012). Herr *et al.* Nat. Photon. (2012).

diamond Hausmann *et al.*, Nat. Photon. (2013).

Al nitride Jung *et al.*, Opt. Lett. (2013).

- [1] Saha, et al., Lipson & Gaeta (2013); Luke, et al., Gaeta & Lipson, in preparation (2015).
- [2] Del'Haye, et al., and Kippenberg, Phys. Rev. Lett. (2011).
- [3] Okawachi, et al., Lipson & Gaeta, Opt. Lett. (2011); Okawachi, et al., Lipson & Gaeta, Opt. Lett. (2013).
- [4] Wang, et al., and Kippenberg, Nature Comm (2012).
- [5] Griffiths, et al., Gaeta & Lipson, Nat. Comm. (2015).
- [6] Luke, et al., Gaeta and Lipson, in preparation (2015).
- [7] Lecaplain, et al., Kippenberg, arXiv (2015).
- [8] Savchenko, et al., Maleki, arXiv (2015).

Silicon-Based Microresonators for Parametric Comb Generation

- CMOS-compatible material
- Fully monolithic and sealed structures and couplers
- High-Q resonators \rightarrow Si₃N₄ Q = 7 × 10⁶ [Luke, et al., *Opt. Express* (2013).]

Si $Q \sim 10^6$ [Lee, et al., (2013).]

• High nonlinearity $\rightarrow n_2 \sim 10-100 \times \text{ silica}$

Waveguide dispersion can be engineered
 [Foster, et al., Lipson, Gaeta, Nature 441, 960 (2006).
 Turner-Foster, et al., Gaeta, Lipson, Opt. Express 18, 1904 (2010).]]

• Oxide cladding limits generation $< 5 \,\mu m$ (?)

Foster, Turner, Sharping, Schmidt, Lipson, and Gaeta, *Nature* **441**, 960 (2006). Turner, et al. Gaeta, and Lipson, *Opt. Express* **14**, 4357 (2006).

Octave-Spanning Comb in Si₃N₄

> 150 THz bandwidth

QUANTUM

& NONL

GROU

- Stable, robust, highly compact comb source for clock applications
- Modest power requirements (100's of mW)

Okawachi, et al., Lipson, and Gaeta, Opt. Lett. (2011).

Dispersion Engineering: Broadband Combs with 1-\mum Pump in Si₃N₄

- 690 x 1400 nm cross section, 46-μm resonator radius (500 GHz FSR)
- >2/3 octave of continuous comb bandwidth

Saha, et al., Lipson, and Gaeta, Opt. Express (2012) Luke et al. Lipson, Gaeta, to be published (2014).

QUANTUM

& NON

GROL

Mid-IR Comb in Si₃N₄

- 950 x 2700 nm waveguide
- Fully filled in comb spanning 2.3 3.4um
- $P_{th} \sim 80 \text{ mW}$, FSR = 99GHz

Luke, et al., Gaeta & Lipson, Opt. Lett. (2015)

Silicon as a Mid-IR Material

Advantages:

- Large 3rd order nonlinearity
- Transparent to ~ 8 um
- High refractive index

Problem:

- Need to pump > 2 μ m
- Three-photon absorption
- Significant above 1 Watt circulating power

Fabricated Silicon Device

- 500 × 1400 nm etchless silicon microresonator with p-i-n structure
- Q-factor ~10⁶
- Measurement with FTIR OSA
 Bandwidth limited by dynamic range of OSA

- 2608-nm pump
- 750-nm bandwidth
- 125-GHz FSR
 (100 μm radius)

Griffith, et al., Gaeta and Lipson, Nat. Comm. (2015)

Near Octave-Spanning Mid-IR Comb Generation in Si Microresonator

Chip-Based Comb Generation

- Origin of combs can be traced to <u>four-wave mixing (FWM)</u>
- Requires small anomalous group-velocity dispersion

- Engineer dispersion by tailoring waveguide cross section
- Design broad region of anomalous group velocity dispersion (β₂) around 1-μm pump
- Coherent SCG with 100-fs pump through self-phase modulation and dispersive wave emission

Collaboration w/ Ursula Keller's group (ETH-Zurich)

- Pump with 1-GHz repetition rate SESAM-modelocked diode-pumped Yb:CALGO laser [Klenner et al., Opt. Express (2014)]
- 92-fs input pulses, 1055 nm center wavelength

- OSA sweep records ensemble average
- Coherence $|g_{12}^{(1)}|$ related to visibility $V(\lambda)$

[Nicholson and Yan, Opt. Express (2004); Gu et al., Opt. Express (2011)]

$$V(\lambda) = \frac{I_{\max}(\lambda) - I_{\min}(\lambda)}{I_{\max}(\lambda) + I_{\min}(\lambda)} \qquad V(\lambda) = \frac{2\left|g_{12}^{(1)}\right|\left[I_{1}(\lambda)I_{2}(\lambda)\right]^{1/2}}{\left[I_{1}(\lambda) + I_{2}(\lambda)\right]}$$

1/0

• Perform coherence measurement in 100-nm increments

Coherent Supercontinuum for f-to-2f Interferometry

UNIVERS

- Spectrum at 1360 nm is frequency doubled and overlapped with spectrum at 680 nm
- *f*_{ceo} signal-to-noise ratio > 30 dB
- Much lower noise level (10 dB) than w/ PCF

 Waveguide dispersion tailored longitudinally

• Visible – mid-IR

Stabilized > Octave

Visible – mid-IR

 For applications (e.g., frequency synthesizer) that are particularly power sensitive.

[Okawachi et al. Lipson & Gaeta (2015)]

Visible – mid-IR