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Optical frequency comb

fn = fO + nfrep

* octave span for F-2F locking of f,
* mode locking for direct measurement of f..,,
*  frep low enough to directly measure

* Overall stability comes from external atomic clock
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Micro-comb challenges

Can we get most of the comb features from a single microresonator?

* Measurable f,..,

* Octave span and power sufficient for F-2F (or 2F-3F)
* Mode locked operation (solitons)
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A good example of state of the art:
soliton state with 2/3-octave span
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http://arxiv.org/pdf/1410.8598.pdf EPFL+Skoltech
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There are many different platforms
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Crystalline WGM resonators

Record optical (up to Q >10) and compact mode volume lead to efficient comb generation
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Frequency comb observed in a resonator with engineered spectrum. The TE,,, 10, ;mode near 1560.3 nm (loaded Q = 8.4 X
107, intrinsic Q = 2 x 108) was pumped. Resonator diameter is 403 um. Strong geometric dispersion leads to overall normal
resonators dispersion. Over a hundred comb lines spanning more than 200 nm (23.5 THz), limited by OSA range, are observed
with only 50 mW of optical pump power.

Table 1. Parameters of Various MgF,; Microresonator-based Frequency Combs

Reference FSR., GHz (diameter, Dptiqal Q) factor Pu mp, Pump 4, Comb span,
um) near = 1.55 pm mW um nm

[9] 107 (700) >10’ 600 2.45 ~200

[8] 68 (1000) ~2x 10°F 500 1.56 ~300

[13] 34.67 (2000) 107 2 1.543 ~20

This work 172.44 (403) ~2 x 10° 30 1.56 =200

[8] T. Herr et al., “Universal dynamics of kerr frequency comb formation in microresonators,” arXiv:1111.3071.
[9] C. Y. Wang et al.,“Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716.
[13] W. Liang et al., “Generation of nearinfrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36(12), 2290-2292 (2011).

Need dispersion engineering to reach octave span



Dispersion engineering in PBR

Enables dispersion engineering in crystalline WGM resonators
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Photonic belt resonators

a Whispering gallery resonator Resonator on a chip
: Waveguide
. Substrate . . Microstructured - '
resonator
Auially symmetric substrate, Ridge waveguide
:' plica Ii‘f—.x ¥ dispe '-ii.-'l-|I':i'-.'.|—'!!||:"' ontro
b Substrate:

MgFz, R=0.75mm
Waveguides:
7x5 micrometers




Dispersion, (ps/nm-km)

Single mode PBR in one octave

Dispersion of MgF, MCRs, R=1320 mkm, single mode in an octave around 1550nm
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Dispersion, ps/(nm-km)

I
=
|

L)
[
|

M
=
I

[,
=

=

Unexplored potential of PBR

Dispersion of MgF, PBRs, R=1320 mkm, single mode
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More dispersion engineering: CaF,

= Sphere R=750 um

-=== Sphere R=750 um (MgF>)
~o~ Waveguide h=6, w=7 um
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Optical power, dBm

Optical power, dBm

More dispersion engineering: CaF,
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Dispersion engineering in MgF, PBR
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Microstructured waveguides and
corresponding dispersion.

a, Each of the 8 images represents
an area sized 25x45 micrometers.
The optical images of the waveguide
cross sections are shown along with
the mode intensity maps obtained
with FEM modelling.

b, Numerically computed total
cavity dispersion for the waveguides
shown in a). The waveguide “S" with
Gaussian waveguide shape, similar
to previously reported single mode
resonators, has the same dispersion
as an ideal sphere.

I. S. Grudinin, and N. Yu, Optica 2(3) 221-224 (2015)



PBR vs Gaussian single mode WGM
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Frequency combs generated in photonic belt resonators with 300 mW of pump at A=1560 nm (192.4 THz). a, The

primary comb in waveguide “"C" starts at N=408 in contrast to N~30 in waveguides A" and “'B'". b, Secondary
comb formation in waveguide ""C" starts as the laser detuning is reduced. ¢, Comb states at a minimum stable

detuning. The comb from the waveguide ""C" contains nearly 2000 lines spanning 100 THz. Inset shows cavity FSR--

spaced comb lines. The comb from the waveguide "'S" shows evidence of avoided mode crossing
I. S. Grudinin, and N. Yu, Optica 2(3) 221-224 (2015)



Octave spanning at 46 GHz

First octave spanning comb with repetition rate below 50 GHz and pump power of less than 1 W
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Octave spanning frequency comb and its beatnote. Waveguide “C" produced comb lines spanning across over one
octave (blue). The noise level for large laser detuning where no comb is generated is also shown (black). The gap
could be explained by near-IR fiber absorption or by particular resonator dispersion and spectrum. Resonator

intrinsic Q=50 million, pump power 600 mW, FSR 46 GHz.

l. S. Grudinin, and N. Yu, Optica 2(3) 221-224 (2015) .
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“Frequency jump™” excitation of solitons

_ Non-soliton state
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* "Temporal solitons in optical microresonators," T. Herr, V. Brasch, J.D. Jost, CY. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J.
Kippenberg, Nature Photonics 8, 145-152

Spectra from: “Towards efficient octave-spanning comb with micro-structured crystalline resonator,” lvan S. Grudinin, Nan Yu, Proc.

SPIE 9343, Laser Resonators, Microresonators, and Beam Control XVII, 93430F (March 13, 2015) ”



Image obtained by Risaku Toda, optical profilometer MDL JPL.
» Surface scattering limited (intrinsic) Q=10° @ 1561 nm.
e Single TE mode operation (TM is suppressed)
* Dispersion engineering
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Photodetector signal, a.u.

Solitons in MgF, PBR, 25.8 GHz

Characteristic soliton
steps in transmission

Laser frequency detuning, a.u.
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PBR features and prospects

Probably the most efficient dispersion engineered microcomb
Fluoride crystals and other materials

Q>10°, compact optical mode volume = efficient comb generation
UV, visible, near-IR and mid-IR operation

Soliton states demonstrated

Dispersion engineering for octave comb span

Single mode operation

Next step: broadband solitons

eHeterogeneous integration, or
efluoride chip based comb generators
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PBR challenges

Fabrication

Significant dispersion change is achieved by 50 nm geometry modification
Current fabrication precision ~ 500 nm.

Imaging

SEM — leads to surface charging effects, requires coating, slow
Profilometer — not capable of side wall imaging, slow

Imprint lithographic method — new technique, fast (2-3 hours)

Optical 500x Micro-imprint
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