

from A to B (from Astronomy to Bio, and beyond)

D. Prober, Yale Univ. Depts. Applied Physics and Physics with thanks for collaborators and Yale colleagues

<u>Acknowledgements</u> <u>Spectroscopy demo – soon</u>

<u>Outline</u>

- Types of sensors
 - Transition Edge Sensor
 - Superconducting Tunnel Junction; MKID
 - SC Nanowire, Avalanche Photodiode
- Applications
 - X-ray astronomy, spectroscopy
 - Near IR Quantum Key Distribution
 - Bio fluorescence

Why single photon?

- Weak sources; <u>spectroscopy</u>; $E_{ph} = hf = hc/\lambda$
- Encode information, entangle
- Timing, coincidence
- Measure <u>particle</u> energy
- Speed is important = challenge in cold env.
- <u>Arrays</u> = key enabler for most future applications
- Energy scales $1 \text{ eV} = 1.2 \ \mu\text{m} = 250 \ \text{THz} \ \text{T} = 10^{12}$ $1 \ \text{meV} = 1.2 \ \text{mm} = 0.25 \ \text{THz}$ (visible: $\approx 1.6 - 3 \ \text{eV}$; $0.4 - 0.7 \ \mu\text{m}$)

Why single photon?

• <u>Spectroscopy</u> demo – dispersive spectroscopy

Why single photon?

- Weak sources; <u>spectroscopy</u>; $E_{ph} = hf = hc/\lambda$
- Encode information, entangle
- Timing, coincidence
- Measure <u>particle</u> energy
- Speed is important = challenge in cold env.
- <u>Arrays</u> = key enabler for most future applications
- Energy scales $1 \text{ eV} = 1.2 \ \mu\text{m} = 250 \ \text{THz} \ \text{T} = 10^{12}$ $1 \ \text{meV} = 1.2 \ \text{mm} = 0.25 \ \text{THz}$ (visible: $\approx 1.6 - 3 \ \text{eV}$; $0.4 - 0.7 \ \mu\text{m}$)

Bolometer Detector – Thermal → cold + small

Basic Transition Edge Sensor Operation

Superconducting wire (the TES) is used as a thermometer – read out changes of resistance electrically.

Typical SC transition $T_c < 1K$

Voltage bias \rightarrow faster response, more sensitive

SQUIDs essential for low T multiplexing, low noise

Low count rates for astro xray applications ≈ 100/sec; SQUID mux 'easy'

Kilbourne, TIPP09

A collaboration of the UK,
Canada, Raytheon, and NIST
SCUBA-2 will consist of 10,240
TES bolometer pixels (half at 450 μm, half at 850 μm) on the James
Clerk Maxwell Telescope.
TES = transition edge sensor

= thermometer in bolometer

 First large-array demo of TES POWER detectors (not single photon)

James Clerk Maxwell Telescope

SCUBA-2

Moseley, Applied Superconductivity Conf., 2008

Techniques of semicond. industry; special materials.

Applied Superconductivity Conference

X-Ray TES structure

Thick Au/Bi absorber, weakly attach Mo/Au bilayer TES

TES is thermometer only

Kilbourne, TIPP09

<u>Au/Bi Absorbers (~ 1 μm Au, 4 μm Bi)</u> on SiN membrane; msec response

Application to Laboratory Astrophysics

- Electron-Beam Ion Trap at LLNL
 - Astrophysically relevant plasmas in the laboratory
- Currently:
 - EBIT Calorimeter Spectrometer uses silicon thermistor array for broad-band coverage
 - Dispersive spectrometers for high energy resolution below 1 keV
- Next generation: TES spectrometer
 - Match (exceed) ΔE of upcoming missions
 - Reduce the need for the dispersive spectrometer

EBIT Calorimeter Spectrometer at LLNL (2008)

Eckart, LTD13

Microcalorimeter alpha particle detectors

–environmental monitoring
–nuclear safeguards
–medical assay
Scaled up x-ray TES'

Technology dissemination

- 4 channel alpha spectrometer installed at LANL
- SQUIDs, SQUID electronics, wiring from $STR_{Cryoelectronics}$
- TESs originally from NIST, now from STAR
- High quality spectra routine
- Phase II SBIR awarded for commercial system

STJ (excitation) detector

Photon breaks Cooper pairs \rightarrow 2 quasiparticles/photon initially, multiply by cascade until $n_{avg} \approx E_{ph}/E_{g}$; this qp charge then tunnels thru oxide barrier

→ statistical variation $\delta n \approx n_{avg}^{1/2}$ this gives the energy resolution of the STJ detector

T << T_c

STJ – high impedance → semicond. amplifier

P. Verhoeve, LTD 13

Soft X-Ray Spectrometer Using 100-Pixel STJ Detectors for Synchrotron Radiation

Shigetomo Shiki, (AIST)-LTD13

<u>Beam Line use of STJs</u> – need count rate (does not need TES energy resolution)

Natl. Inst. of Advanced Industrial Science and Technology (AIST), Japan 0.2 – 2 keV

Stanford SSRL - 112 pixels LBL-ALS - 9 pixels – S. Friedrich, LLNL

<u>First Results On The Imaging Capabilities Of A</u> <u>DROID Array In The UV/Visible</u>

R.A. Hijmering, et al., ESA LTD13

DROID = Distributed ReadOut Imaging Detector

- 3x20 DROID array 33.5x $360\mu m^2 \rightarrow 120$ amplifiers
- Photons from back side
- Ta DROIDs, Ta/Al STJ; 11 'pixels' per DROID
- Measured in S-Cam3 system (single STJs)
- Offline coincident events determination
- Testing, development in progress

Microwave Kinetic Inductance Detector

Absorb photon in supercond. quarter-wavelength resonator.

Inductance = magnetic + kinetic

Kinetic inductance increases and resonant freq. decreases, due to reduced number of pairs

-the hometown candidate!

First demo – mm-wave camera at CSO

Detects power.

Nb microstrip to couple mm-wavelength photons from antenna to a lossy Al strip; creates qps in Al.

Array concepts – strong, demonstrated; capitalizes on existing microwave digital sig. processing; open source collaboration (Ben Mazin, UCSB).

Collaboration in many areas of device development.

Maloney, LTD13

<u>Optical TES - Structures to Enhance</u> <u>Detection Efficiency for Visible/IR</u>

- 95% ± 2% system detection efficiency for 1550 nm
- Microsecond response

Superconducting Nanowire Single Photon Detectors

electron-beam lithography

Bar - Ilan	SEI 15.0kV X15.000 1µm WD 6.7mm

Meander pattern - Yale Nb device;

Performance shown below for MIT/LL devices made from NbN films

K. Rosfjord, et al., Optics Express 14, P. 527 (2006).

- This work is sponsored by the United States Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government

electron-beam and optical lithography

Cavity structure + AR coating improves coupling to ~ 85%

Detection System Performance

- 2 fibers coupled to detectors in a single cryocooler
 - Each fiber is integrated with a long-working-distance focuser
 - Focuser is nano-positioned over the detector
 - Light is coupled into a semicircular detector
 - < 2 dB coupling loss</p>
- System detection efficiency = 31%
- Timing jitter < 40 ps
- Recovery time
 - < 9 ns to 50% of initial DE</p>
 - < 20 ns to 90% of initial DESlides from E. Dauler, Lincoln Lab

This work is sponsored by the United States Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government

MIT Lincoln Laboratory

Quantum Key Distribution QKD Basics

- Key idea: send quantum states such that eavesdropping must affect the state in a measurable way
- Requirements transmit between fiber 'terminals' that are up to 100 km apart; use conventional fiber networks, either 1550 nm or 1300 nm (to avoid 1550 traffic)

New QKD Secure Key Rate Record

- Previous record (100+km): Stanford / NTT / NIST groups demonstrated 17 kbit/s over 105 km and 10 bit/s over 200 km fiber
- New record (100+km): 1.85 Mbit/s secure key rate over 101 km of fiber
 - Utilizes higher-efficiency superconducting detectors & better DPSK technology E. Dauler; K. Berggren talk

MIT Lincoln Laboratory

NIST Fiber QKD with LANL

Hiskett et al , New J. Phys. 8 193 (2006)

Rosenberg et al, Phys. Rev. Lett. 98, 010503 (2007)

S. Nam, NIST Boulder

QKD secures Elections in Geneva

- Continuous operation during more than 7 weeks
- Encryption of a Gigabit Ethernet link
- As of 2008, used to secure all elections in the Geneva Canton
 - Used in Oct. 08, Oct. 09 and Nov. 09

vernment Central

Downtown Geneva

Gregoire Ribordy, id Quantique

28

Bio Applications – Single Molecule

- FRET Fluorescence Resonance Energy Transfer
- Single molecules only emit 100s to 1000s of photons (typically)
- Want to know spectrum, timing, everything
- Visible, NIR; ≈ all commercial
- SPAD (like photomultipler)

(www.labautopedia)

FRET – if binding and unbinding (measure cts/sec)

Bio Applications – Single Molecule; binding

- C,T,G,A cytosine, thymine, guanine, adenine (A--T,C--G)
 - Black dot is 'quencher', green is absorber, red = fluor
 - Cancer diagnostic? NIR
 - Pathology during operation less removal
 - Molecules delivered by FedEx

Nd-YAG laser, 1064 nm

> M. Kraniak, GSFC

SPCMs for aerosols

M. Kraniak, **GSFC**

Nov. 3, 2009

- Single Photon Workshop -**Boulder, CO USA**

M. Kraniak, GSFC

FIR Single Photon Det.- Astro Motivation

- photon counting > 1 THz (λ = 300 µm); Quantum-dot detector demonstrated; but only 1% detection efficiency, narrow range of E_{ph}

B. Karasik

Antenna-coupled nano-TES- testing with fauxtons

(faux photon) – a new "quanta" for single photon testing; real photons = very hard - see Karasik – has just seen real photons; Santavicca

Fast microwave (20 GHz) pulse; absorbed pulse energy (fauxton) = energy of single higher-freq. photon. Measure the reflection coefficient (due to change of R) at 1 GHz.

Based on measured performance, predict for smaller TES - single 1 THz (4 meV) photons can be counted!

D.Santavicca, Yale

Future sensitivity challenges in space

Future spectroscopic space missions featuring cryocooled (4-5 K) primary mirrors (e.g., SPICA, SAFIR, CALISTO, SPECS) will require a ~ 3-order of magnitude detector sensitivity improvement

Photon integration below 1 THz
Photon counting above 1 THz Karasik&Sergeev, *IEEE Trans. Appl. Supercond.* 2005

From the following article

Single-photon detectors for optical quantum information applications

Robert H. Hadfield

Nature Photonics 3, 696 - 705 (2009)

doi:10.1038/nphoton.2009.230

Table 1. Comparison of single-photon detectors.

Detector type	Operation	Detection	Jitter	Dark	Figure of	Max.	Resolves	Class of
	(K)	η η	(FWHM)	rate, D	merit	rate	number?	or report
				(ungated)				
PMT (visible-	300	40% @500	300 ps	100 Hz	1.33 ×	10	Yes	<u>+</u>
near-infrared) ³¹		nm			10 ⁷	MHZ		
PMT	200	2% @1,550	300 ps	200 kHz	3.33 ×	10	Yes	<u>†</u>
(infrared) ³²		nm			10^{2}	MHz		
Si SPAD (thick	250	65% @650	400 ps	25 Hz	6.5×	10	No	+
junction) ³⁸		nm			10 ⁷	MHz		
Si SPAD	250	49% @550	$35\mathrm{ps}$	25 Hz	5.6×	10	No	<u>†</u>
(shallow		nm			10 ⁸	MHz		
junction) ⁴¹								

The class of report indicates the conditions under which the detector characteristics were measured;

† represents a commercial product specification,

t represents the use of the detector in a prestical examinent and

Detector type	Operation	Detection	Jitter	Dark	Figure	Max.	Resolves	Class
	temperature	efficiency,	time, Δt	count	of 	count	photon	of .
	(K)	n	(FWHM)	rate, D	merit	rate	number?	report
InGaAs SPAD	200	10%	370 ps	91 Hz	2.97×	10	No	<u>±</u>
(gated) ⁵⁵		@1,550 nm			10 ⁵	kHz		
InGaAs SPAD (self-	240	10% @1,550 nm	55 ps	16 kHz	1.14 × 10 ⁵	100 MHz	Yes	<u>*</u>
differencing) ⁵⁷								
Frequency	300	9% @1,550	400 ps	13 kHz	1.7×	10	No	<u>ŧ</u>
up-conversion ⁶⁵		nm			10 ⁴	MHz		
Frequency	300	2% @1,550	40 ps	20 kHz	2.5×	10	No	<u>*</u>
up-conversion ⁶⁵		nm			10 ⁴	MHz		
VLPC ⁶⁹	6	88% @694 nm		20 kHz	-	_	Yes	8
VLPC-	6	34% @633 nm	270 ps	7 kHz	1.83× 10 ⁵	_	Yes	8
TES <mark>76</mark>	0.1	50% @1,550 nm	100 ns	3 Hz	1.67× 10 ⁶	100 kHz	Yes	<u>*</u>
TES ²⁰	0.1	95% @1,550 nm	100 ns	_	—	100 kHz	Yes	ŝ
SNSPD	3	0.7%	60 ps	10 Hz	1.16 ×	100	No	*
(meander) <mark>90</mark>		@1,550 nm			10 ⁷	MHz		
SNSPD (new) ⁸⁷	1.5	57% @1,550 nm	30 ps	_	_	1 GHz	No	8
QD (resonant	4	12% @550	150 ns	2 × 10 ⁻³ Hz	4×10^{9}	250	No	<u>§</u>
tunnel diode) <mark>96</mark>		nm				kHz		
QD (field-effect transistor) ⁹³	4	68% @805 nm	_		_	1 Hz	Yes	ŝ

The class of report indicates the conditions under which the detector characteristics were measured;

Antenna-coupled nano-TES

- testing with Fauxtons

fauxton (faux photon) - a new "quanta" for single photon testing

- Testing in a dark environment; no stray photons P << 1fW
- Arbitrary tunability of fauxton energy
- Can "sneak up" on hardest problems; optimize device fabrication, performance, and signal processing while a THz single-photon test system is developed

D.Santavicca, Yale

Testing with Fauxtons

Experimental schematic for fauxton testing Trigger signal used

D.Santavicca, Yale

Quantum Dot Detector

Transistor stays 'on' for a short time =counted photo eff. 2%

S. Komiyama et al., Nature 403, 405 (2000)

FIR: FET Results

Current due to 15 µm photons increases during illumination, in steps of 3 pA (if you are charitable); note 360 µA initial current. <u>This is a VERY challenging</u> detection goal!

Ó

(b)

100

10

0.1-

0.01

1E-3-

1E-4

1E-5

1E-6-

α (µA/s)

10

97K

82K

53K

50

69K

56K

9K-44K

n

134K

20

Time (sec)

100

30

100

200

Pin (mW)

200

250

155K 177K 199K 222K 244K

0

150

40

Ueda et al. J. Appl. Phys. 103, 093109 (2008)

<u>FIR excitation – n_{photon} controls current of FET</u>

TES α particle sensors: nuclear materials analysis

- J. Ullom, LTD13

- alpha spectroscopy is a powerful tool for trace actinide measurements
 - environmental monitoring
 - nuclear safeguards
 - medical assay
- alpha branching ratios higher than $\gamma \Rightarrow$ used for smaller samples (ug-pg)
- ~ 8 keV resolution limit of Si detectors has consequences:
 - elemental overlaps \Rightarrow slow and expensive wet chemistry to separate elements
 - can't split ²³⁹Pu/²⁴⁰Pu is slow and expensive mass spectrometry

Device Characteristics

Measured timing jitter of device at T=1.8K ~1 photon/pulse

MIT LL data

<u>QKD – Quantum Key Distribution</u>

- Presently use InGaAs detectors over standard fiber = demo
- Tested in Swiss network (*id Quantique*) also used single photon random number generator in voting authentication for Geneva
- Goal of QKD is to create a shared secret key that is then used to encrypt data.
- Transmission rates limited by detection efficiency, fiber losses over L ≈ 100 km, and (for fastest NbN nanowire detectors) standard electronics (electronics might not utilize the very small timing jitter of NbN detector)
- Nanowire fast, good detection efficiency; good for QKD
- TES higher DE, but too slow for QKD; good for other QI apps.

Ref - J.Kerman, E. Dauler

Bio Applications – Single Molecule

Yildiz Lab, UCB

- Uses 5 ns pulses from a diode pumped Q-switched Nd:YAG laser operating in the near infrared (1064 nanometers), used for the measurement of surface topography.
- Backscattered light in the green (532 nanometers) for aerosols and other atmospheric characteristics.
- Return photons collected in a 1 meter diameter telescope and the laser transmits 40 pulses/s to the surface.
- The spots produced on the Earth's surface will have a 70 meter diameter and the spacing between spots will be 175 meters, caused by the orbital motion of the spacecraft.
- → Low power single-photon communication, distant.

M. Kraniak, GSFC

FIR Single-photon Detectors energies in solids, molecules. 1.Quantum Dot

Recent work - FIR excitation → n_{photon} controls current of FET

S. Komiyama et al., Nature 403, 405 (2000)