Linking the protosolar disk with the inner Solar System

Sample Return from across the Solar System – KISS Workshop Short Course – Talk 2

François L.H. Tissot The Isotoparium, Caltech

A short history of everything

Slide 2 / 31

A short history of everything

Insights into exoplanetary system formation

Studying Solar System formation

Focus and outline

Part I. Meteorites: archives of planetary evolution

Stony meteorites Crusts/Mantles

Stony-iron meteorites Core-Mantle boundaries

Iron meteorites **Cores**

Meteorites: archives of Solar System evolution

Chondrites = Space sediments containing snapshots of the early Solar System composition

Part II: Nucleosynthetic anomalies

Anomalies can be radiogenic (radioactive decay), cosmogenic (cosmic ray exposure), nucleogenic (particle capture), or... ...nucleosynthetic: reflecting difference in nucleosynthetic heritage.

A timeline of anomalies

- Early 60s: Uniform isotopic composition of Solar System material
- Late 60s: Anomalies in Xe and Ne in chondrites
- 70s & 80s: Anomalies in Ca, Ti, Sr, Ba, Nd, Sm **in refractory inclusions**.

Late 80s: In an attempt to dissolve the carrier of anomalous Xe...

□ Discovery of presolar grains

Powerful cosmic tracers

Nucleosynthetic anomalies inform us on:

- Stellar sources to the SS
- Early Solar System architecture
- Genetic links between planetary bodies
- Material mixing/transport in the disk

Nucleosynthetic anomalies track stellar processes

Patterns diagnostic of nucleosynthetic processes

Part III. Isotope anomalies and the SS architecture

Long-term preservation of disk heterogeneity

Kleine et al (2020)

NC and CC reservoir co-existed!

How can we separate and preserve 2 major reservoirs formed within 1 Myr of SS formation?

Rapid formation of Jupiter's core?

Long-term preservation of disk heterogeneity

Migration of snow line

Formation at different T: silicate lines *vs* snow lines

Origin of disk heterogeneity: current debate

Origin of disk heterogeneity

Origin of disk heterogeneity: streamers?

Streamers are ubiquitous and can deliver isotopically distinct materials to protoplanetary disks

IV. Building blocks of terrestrial planets

The building block of planets?

Similar minimization exercises since the 1990s, using:

- Elemental ratios
- O, Ti, Cr, Ni, Mo, Ca, Sr isotopes
- Chondrites and differentiated meteorites

(e.g., Lodders & Fegley 1997; Sanloup+ 1999, Fitoussi+ 2016; Brasser+ 2018;... and many more!)

Main limitations:

□ Answer = f(input parameters)

- # of element/isotope systems considered
- Sampling bias (all possible building blocks?)

Chondrites only: Earth is enstatite-like (~90%) Chondrites & achondrites: Earth & Mars >50% angrite.

□ Latter is consistent with recent model of planetary formation via accretion of differentiated planetesimals.

The building block of planets: Accretion history

Metal/silicate partitioning needs to be considered to compare Earth vs potential building blocks

□ Elements record different periods in a planet's accretion

Assuming an exhaustive collection of potential building blocks, could reconstruct the accretion history of a planet!

(Here Earth mainly accreted from enstatite-like material) \Box

Do we have an exhaustive collection of potential building blocks?

Source of (moderately) volatiles in terrestrial planets

30% of Earth's Zn is of CC origin

~0% of Mars' Zn is of CC origin

Clear differences in accretion history, □ what about Venus and Mercury?

The Earth-Moon isotopic kinship

Zhang et al. (2012)

7

Missing building blocks of terrestrial planets

Earth = **x% NC** + **y% CC**

(e.g., 90% EC + 10 % CI or 60% Ureilites + 40% CI)

Problem as Earth is an end-member

Earth = ... 100% Earth? (or 100% EC)

Earth = EC ?

Isotopically, Earth closest to enstatite chondrites

Chemically, Earth is furthest from enstatite chondrites

Unsampled reservoir?

□ Are we missing a major building block of the Earth?

Burkhardt (2021)

Observation in

numerous

isotope-isotope

spaces.

Unsampled reservoir?

Correlations even for elements with different geochemical behaviors (lithophile/ siderophile) (e.g., Ti, Mo, Zr).

□ Was this unsampled reservoir the inner SS material?

The need for return samples: a biased collection

The need for return samples: a biased collection

1) Unlikely that <u>all SS materials</u> are stored in the asteroid belt.

2) Even more unlikely that <u>a fragment</u> <u>of each</u> is in our museum collections.

Inner SS return sample: key questions

1) What is the composition of the inner SS?

- Is it homogeneous/uniform?
- □ Would readily Earth and Moon isotopic kinship
- Is there a missing end-member currently lacking from our collections?
 Most readily addressed by return mission

2) What was the volatile accretion history of terrestrial planets?

Did Earth and Venus form with the same volatile budget?
 □ Venus return mission is needed.

3) Is the chondritic model of composition of the Earth adequate?

- Are terrestrial planet building blocks chondritic?

- If not, why are most of the building blocks of the Earth lacking from our meteorite collections?

Conclusions

Nucleosynthetic anomalies **testify to the incomplete homogenization of presolar materials** during solar system formation.

They have become **invaluable tracers** of: (i) genetic relationships, (ii) early SS architecture, and (iii) mixing and transport in the early SS.

1st order dichotomy between carbonaceous and non-carbonaceous SS materials.

Origin of the dichotomy is a major topic of research: (i) Early formation of Jupiter? (ii) Snow line migration? or (iii) Condensation at distinct locations?

Origin of isotopic heterogeneity is also debated: inheritance vs unmixing.

Inner SS sample return will be key understanding:

(i) Inner SS chemistry, (ii) Bulk composition of the Earth, and (iii) Accretion history of terrestrial planets (including volatiles)

Thank you for your attention!

Image credit: JPL/Nasi

Isotope cosmochemistry workflow

The Isotoparium

Sample preparation in a dust-free, metal-free, acid-resistant environment.