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A short history of everything
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HL Tauri, ALMA

Insights into exoplanetary system formation

Rings of
gas + dust

Protostar

Disk of

gas + dust Gaps where planets form (?)

Actual image of a planetary system being formed
O Is this how our Solar System formed?
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Studying Solar System formation
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Focus and outline

meteorites
alies as tracers of early SS
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Part I. Meteorites: archives of planetary evolution
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Stony meteorites Stony-iron meteorites Iron meteorites

Crusts/Mantles Core-Mantle boundaries Cores .
ide 7 /31



Meteorites: archives of Solar System evolution
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(carbonaceous meteorite)

Chondrites = Space sediments containing snapshots of
the early Solar System composition
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Abundance rel. to standard

Part II: Nucleosynthetic anomalies
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Anomalies can be radiogenic (radioactive decay), cosmogenic (cosmic ray exposure),
nucleogenic (particle capture), or...
...nucleosynthetic: reflecting difference in nucleosynthetic heritage.
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Early 60s:

Late 60s:

70s & 80s:

Late 80s:

Early 00s
and on:

A timeline of anomalies

Uniform isotopic composition of Solar System material
1 hypothesis of homogeneization in a hot solar nebula (Cameron, 1962)
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In an attempt to dissolve the carrier of anomalous Xe...

Residue left!

(Lewis et al. 1987)

O Discovery of presolar grains

Nucleosynthetic anomalies in bulk undifferentiated and iron meteorites
O Isotopic heterogeneity from micron-scale to planetary-scale
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Powerful cosmic tracers

. .. Toda
Nucleosynthetic anomalies inform us on: y -

- Stellar sources to the SS

Formation of

- Early Solar System architecture the Galaxy

Stellar

- Genetic links between planetary bodies Nucleo.

&
. o . ) Planetary Galactic
- Material mixing/transport in the disk accretion Chemical
& evolution Evolution

4567 Ga
SS formation
~10-50 Myr
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Nucleosynthetic anomalies track stellar processes

terrestrial
Mo

r-excess
s-deficit

p-excess

100010

Patterns diagnostic of
nucleosynthetic processes

Burkhardt et al. (2011)
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Part I1I. Isotope anomalies and the SS architecture
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Lichtenberg et al (2021)

Disk temperature (K)

Long-term preservation of disk heterogeneity
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Formation at different T:
silicate lines vs snow lines
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Origin of disk heterogeneity: current debate

Tissot et al (in review) Slide 16 / 31



Origin of disk heterogeneity
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Origin of disk heterogeneity: streamers?
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Streamers are ubiquitous and can deliver isotopically
distinct materials to protoplanetary disks

Pineda et al. (2023)
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IV. Building blocks of terrestrial planets
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Earth = x% NC + (1-x)% CC
(e.g., 90% EC+10 % CI
‘ 0.8 Y 1.6 or 60% Ureilites + 40% CI)

Earth’s main
building blocks?
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The building block of planets?

- Similar minimization exercises since the 1990s, using:
of - Elemental ratios

5':: O, Ti, Cr, Ni, Mo, Ca, Sr isotopes

ast - Chondrites and differentiated meteorites

AL (e.g., Lodders & Fegley 1997; Sanloup+ 1999, Fitoussi+ 2016; Brasser+

2018;... and many more!)

! Main limitations:
" O Answer = f(input parameters)
os| - # of element/isotope systems considered
- “_._m - Sampling bias (all possible building blocks?)
B! Chondrites only: Earth is enstatite-like (~90%)
sl Chondrites & achondrites: Earth & Mars >50% angrite.

O Latter is consistent with recent model of planetary
L formation via accretion of differentiated planetesimals.

4.
A170 48Ca €50Ti £54Cr £62Ni £92Mo
x10
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The building block of planets: Accretion history
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Metal/silicate partitioning needs to be considered to compare Earth vs
potential building blocks
O Elements record different periods in a planet’s accretion

Assuming an exhaustive collection of potential building blocks, could
reconstruct the accretion history of a planet!
(Here Earth mainly accreted from enstatite-like material) [

O Do we have an exhaustive collection
of potential building blocks?

Fraction of E-component

1 1
0.5

Mass fraction accreted

Dauphas (2017)

Slide 21 /31



Source of (moderately) volatiles in terrestrial planets
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Clear differences in accretion history,

O what about Venus and Mercury?
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Carbonaceous chondrites

Ungrouped

Acapulcoite

The Earth-Moon isotopic kinship
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Zhang et al. (2012)

Schiller et al. (2018)
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- Earth-Moon isotopically identical, incl. for refractory elements.

O Either Theia is isotopically Earth-like

or

Earth and Theia completely equilibrated upon impact
(synestia)
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Missing building blocks of terrestrial planets
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Problem as Earth is an end-member

Earth = ... 100% Earth? (or 100% EC)

Burkhardt (2021)
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Earth=EC?
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Burkhardt (2021)

Unsampled reservoir?
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Observation in
numerous
isotope-isotope
spaces.

Unsampled reservoir?
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[0 Was this unsampled reservoir the inner SS material?

Burkhardt (2021)
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The need for return samples: a biased collection

~330 Martian meteorites

>70,000 meteorites
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The need for return samples: a biased collection

~330 Martian meteorites

>70,000 meteorites

* 10 AU
1AU
X 4 ) Aslje;’toid ~ ‘ ‘
e

1) Unlikely that all SS materials are
stored in the asteroid belt.

2) Even more unlikely that a fragment
of each is in our museum collections.

Image: http://www.skyimagelab.com/lost-pluto.html



Inner SS return sample: key questions

1) What is the composition of the inner SS?
- Is it homogeneous/uniform?
[J Would readily Earth and Moon isotopic kinship
- Is there a missing end-member currently lacking from our collections?
] Most readily addressed by return mission

2) What was the volatile accretion history of terrestrial planets?
- Did Earth and Venus form with the same volatile budget?
1 Venus return mission is needed.

3) Is the chondritic model of composition of the Earth adequate?

- Are terrestrial planet building blocks chondritic?

- If not, why are most of the building blocks of the Earth lacking from our
meteorite collections?

Slide 30 /31



Conclusions

Nucleosynthetic anomalies testify to the incomplete homogenization
of presolar materials during solar system formation.

They have become invaluable tracers of: (i) genetic relationships,
(ii) early SS architecture, and (iii) mixing and transport in the early SS.

1st order dichotomy between carbonaceous and non-carbonaceous SS materials.
Origin of the dichotomy is a major topic of research:
(i) Early formation of Jupiter? (ii) Snow line migration?
or (iii) Condensation at distinct locations?
Origin of isotopic heterogeneity is also debated: inheritance vs unmixing.
Inner SS sample return will be key understanding:

(i) Inner SS chemistry, (ii) Bulk composition of the Earth,
and (iii) Accretion history of terrestrial planets (including volatiles)



Image credit: ]PL/N_HS(?



Isotope cosmochemistry workflow

Purification ICPMS
Multi-Collector
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The Isotoparium

L]

Sample preparation in a dust-free, metal-free, acid-resistant environment.
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