Chemical Fingerprints of the Early Solar System and its Dynamical Evolution

Karen Meech Institute for Astronomy, Univ. Hawai'i

Habitability for terrestrial planets – bringing water to the inner solar system
Chemistry and isotopic signatures vary with temperature in the disk

- Planetesimals formation and scattering by giant planets
- Unwinding the clock perils of using one isotope to trace the history
- Where to look: Clues from meteorites the NC/CC dichotomy
- Testing dynamics with Manx comets
- Value of sample return to assess volatiles in the asteroid belt

Image: NASA/JPL-Calte

Life, water and Astrobiology....

Credits: NASA

- Astrobiology seeks to understand how habitable worlds are made
- Habitability = water + organics + energy + the right temperature

Life, water and Astrobiology.....

Credits: NASA

• Astrobiology seeks to understand how habitable worlds are made

TA MARATE SE

• Habitability = water + organics + energy + the right temperature

As of Sep 8, 2024: ~30-70 potentially habitable planets 5,756 confirmed, 7217 candidates, 4,297 planet systems

Credits: ALMA, ngVLA

235 au

5 αι

2030's

Is our Solar System Unusual?

Habitable zone

00

hot

Too cold

How do we explore Habitable Planet formation in our Solar System?

Comets

Remnants of planet formation, Little altered for 4.5 Gy

Credit: NASA/SOFIA/Lynette Cooke

It is a complex process . . .

Chemistry is set by temperature (location)

Giant planets move things as they grow

Externa

ft (Dust+lce)

What does life need on a planet?

- Organic & other compounds
- A source of energy
- Solvent: Liquid water (just the right amount)

But our inner solar system is dry

What does life need on a planet?

- Organic & other compounds
- A source of energy
- Solvent: Liquid water (just the right amount)

But our inner solar system is dry

Dry

Lost its water Ocean 0.023%

Ocean 0.023% Dry – water at Total ~ 0.05-0.1% poles, subsurface

r at Almost Dry surface

What does life need on a planet?

- Organic & other compounds
- A source of energy
- Solvent: Liquid water (just the right amount)

But our inner solar system is dry

Balsiger 1995, JGR 100 Owen & Bar-Nun 1995, Icarus 116

Earth's Ocean

Н

Giotto Mission D/H 1986

- Comet delivery of water

30X -

12X

3X

D/H

A few comets Meier, R. 1998, Science Bockelee-Morvan, 1998, Icarus

Meteorites

Initial solar system Geiss & Gloeckler 1998, SSR 84

Balsiger 1995, JGR 100 Owen & Bar-Nun 1995, Icarus 116

Earth's Ocean

Isotopic fingerprints

Meech & Raymond (2020)

Meteorite clues

Cr Isotopes

Credit: S. Andrews, B. Saxton, ALMA

Meteorite clues

Earth's water origin scenarios

- 1. Earth captured water & organics from inner disk gas
- 2. Delivery from materials tossed in by Jupiter

Testing the Hypothesis

- Material tossed in by Jupiter hit all the rocky planets
- Some got trapped in the asteroid belt . . . Where they remain today

Tracing the formation

What do we need

- Icy bodies that record history of where they formed
- Need to have the ices survive
- Multiple isotopes
- A source close enough to observe in detail

 \rightarrow Requires an in-situ or sample return mission

What about the dynamics?

Hsieh & Jewitt (2006) Science 312

Meech et al. 2016. Sci. Adv.

Manxes: A New type of LPC

- Aug 2013 Pan-STARRS1 Survey discovers unusual LPC
 - Heliocentric light curve \rightarrow H2O sublimation
 - Does this solve Oort's missing comet problem (run out of volatiles)?
 - Spectrum consistent with inner solar system rocky asteroids

Meech et al. 2016. Sci. Adv.

Manxes: A New type of LPC

- Aug 2013 Pan-STARRS1 Survey discovers unusual LPC
 - Heliocentric light curve \rightarrow H2O sublimation
 - Spectrum consistent with inner solar system rocky asteroids
 - Formed near the SS snowline, ejected to Oort cloud early in SS history?

Manx Implications: Early solar system dynamics

0.4

0.5

0.6

0.7

Wavelength [microns]

0.8

0.9

1.0

- Gas giants interact with planetesimals
 - Scattered Oort cloud material composition depends on scenario
- Manxes have a range of surface colors (& formation locations?)
 - Are these just bodies that form near the ice-line, do they include samples of evolved comets?

Floodgates opening

• LSST Timeline

Early 2025 1st light, Survey late 2025, early 2026

LSST & Small bodies (10 yr survey)

- ~ 100 new MBCs
- ~10,000 comets, 50 data pts along orbit, multiple filters
- 30,000 TNOs
- 5 x 10⁶ Main belt asts, 3 x 10⁵ Jovian trojans, 1 x 10⁵ NEOs

Value of Sample return

- Rich detail on multiple isotope systems that can constrain solar system formation models
 - Example here with origin of Earth's water
 - Return of refractory material also key for habitability story
- Ideally want this for a range of small body classes
 - MBCs, Manxes, LPCs, Jupiter Trojans, small KBOs, ... And of course, ISOs!
- Helps address processes that lead to the formation of habitable worlds in planetary system habitable zones