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● Habitability for terrestrial planets – bringing water to the inner solar system
● Chemistry and isotopic signatures vary with temperature in the disk
● Planetesimals formation and scattering by giant planets
● Unwinding the clock – perils of using one isotope to trace the history
● Where to look: Clues from meteorites – the NC/CC dichotomy
● Testing dynamics with Manx comets
● Value of sample return to assess volatiles in the asteroid belt



Life, water  and Astrobiology. . . . .
• Astrobiology seeks to understand how habitable worlds are made
• Habitability = water + organics + energy + the right temperature
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As of Sep 8, 2024:  ~30-70 potentially habitable planets
5,756 confirmed, 7217 candidates, 4,297 planet systems

Credits: NASA
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Is our Solar System Unusual?
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How do we explore Habitable Planet
formation in our Solar System?

Remnants of planet formation,
Little altered for 4.5 Gy

Comets

Icy asteroids

Credit:  NASA/SOFIA/Lynette Cooke



Chemistry is set by temperature (location)

Giant planets move things as they grow

Figures from I. Cleeves (2018)

It is a complex process . . . 



Lost its waterDry Ocean 0.023% 
Total ~ 0.05-0.1%

Dry – water at 
poles, subsurface

Almost Dry

What does life need on a planet?
• Organic & other compounds
• A source of energy

• Solvent: Liquid water (just the right amount . . . .)

But our inner solar system is dry . . . .
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Lost its waterDry Ocean 0.023% 
Total ~ 0.05-0.1%

Dry – water at 
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What does life need on a planet?
• Organic & other compounds
• A source of energy
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Possible Water Sources

t = 0 10 Million yr 100 Million yr 1 Billion yr

4.567 Billion years - meteorites
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By 4.3 billion yr: granites, 
rock cycle, Water veneer  

Stardust: comet dust 
(NASA/JPL)

S. Mojzsis

4.28 Billion years – Acasta 
Gneiss, Canadian Shield
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A Chemical Fingerprint

Initial solar system
Geiss & Gloeckler 1998, SSR 84
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? If there is more water inside Earth – are we 
measuring it in the right place?

Mottl et al. (2007)
Ocean volumes of H2O

Region Low High Capacity

Ocean/Atm 1.32 1.32 1.32

Crust 0.02 0.10 0.1

Lithosphere 0.04 0.49 3.3

Mantle 0.04 4.2 15.1

Core 0.03 2.8 28.1

Totals 1.5 11.2 59.7

Balsiger 1995, JGR 100
Owen & Bar-Nun 1995, Icarus 116

Hallis et al. 2015, Science 350



A Chemical Fingerprint
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Now What???

Disney/PIXAR



Isotopic fingerprints
Willacy & Woods 2009, ApJ 703, 479

CO + UV àC + O
O + H àOH

H + OH à H2O
NASA/ESA Hubble Heritage

•Different physical processes for different isotopes
àChemical insight from multiple species.  

•What objects do we study?

Meech & Raymond (2020)

Distance from sun [au]
5        10        15      20        25       30

H
ei

gh
t a

bo
ve

 d
is

k 
[a

u]

15

10

5

0



Meteorite clues

Credit: S. Andrews, B. Saxton, ALMA
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Meteorite clues

Credit: S. Andrews, B. Saxton, ALMA

Earth’s water origin scenarios
1. Earth captured water & organics from inner disk gas
2. Delivery from materials tossed in by Jupiter

Testing the Hypothesis
• Material tossed in by Jupiter hit all the rocky planets
• Some got trapped in the asteroid belt . . . Where they 

remain today . . . .



PRO-06g

Tracing the formation 

PRO-06g

Possible solution

What do we need
• Icy bodies that record history of where they formed

• Need to have the ices survive

• Multiple isotopes

• A source close enough to observe in detail
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Figure D.1-2 – Caution – all the blue/yellow dots on the figure were placed by hand.

Stable asteroid
region

Hsieh & Jewitt (2006) 
Science 312

What about the dynamics?

à Requires an in-situ  or sample return mission



• Aug 2013 Pan-STARRS1 Survey discovers unusual LPC
– Heliocentric light curve à H2O sublimation
– Does this solve Oort’s missing comet problem (run out of volatiles)?
– Spectrum consistent with inner solar system rocky asteroids

Oort, J. (1950). BAN 11

Manxes: A New type of LPC

Meech et al. 2016. Sci. Adv.



• Aug 2013 Pan-STARRS1 Survey discovers unusual LPC
– Heliocentric light curve à H2O sublimation
– Spectrum consistent with inner solar system rocky asteroids
– Formed near the SS snowline, ejected to Oort cloud early in SS history?

Oort, J. (1950). BAN 11

Manxes: A New type of LPC

Meech et al. 2016. Sci. Adv.



Manx Implications: Early solar system dynamics

• Gas giants interact with planetesimals

– Scattered Oort cloud material composition depends on scenario

• Manxes have a range of surface colors (& formation locations?)

– Are these just bodies that form near the ice-line, do they include samples of evolved comets?
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Floodgates opening • LSST Timeline
– Early 2025 1st light, Survey late 2025, early 2026

• LSST & Small bodies (10 yr survey)
– ~ 100 new MBCs

– ~10,000 comets, 50 data pts along orbit, multiple filters

– 30,000 TNOs

– 5 x 106 Main belt asts, 3 x 105 Jovian trojans, 1 x 105 NEOs

– ~ 10 interstellar objects



Value of Sample return 
– Rich detail on multiple isotope systems that can constrain solar system 

formation models
• Example here with origin of Earth’s water
• Return of refractory material also key for habitability story

– Ideally want this for a range of small body classes
• MBCs, Manxes, LPCs, Jupiter Trojans, small KBOs, . . . And of course, ISOs!

– Helps address processes that lead to the formation of habitable worlds in
planetary system habitable zones


