Keck meeting

Caveat!!!

Background: biological and chemical cycles in the world's oceans

Significant puzzles about ocean carbon fluxes

North Atlantic subtropical gyre at Bermuda: what enables DIC drawdown in the upper 50 m?

Annual cycle of dissolved inorganic carbon (mmol m⁻³) at Bermuda; upper 250 m

- 7 mmol m⁻³ NO₃ required for observed DIC drawdown
- Throughout growing season, [NO₃-] << 1
- Where does N come from?
 - Nitrogen fixation
 - NO₃⁻ mining by vertically migrating phytoplankton
 - Vertical mixing? But this introduces dissolved inorganic carbon
- AUV's could examine the footprint of this process...

Influence of synoptic meteorological events on ocean carbon fluxes

- Calm weather
 - Shallow, well-lit mixed layer
 - Mature ecosystem develops
 - Grazing ~ production; low export
- Storm comes through
 - Mixed layer deepens, light and productivity fall
- Calm weather ensues
 - Mixed layer shoals
 - Productivity rises in high-light environment
 - Period of high export
 - Mature community develops...
- Is there any validity to this scenario?
 - AUV's could monitor physical forcing and the biogeochemical response
- Alternative
 - Iron deposition as remote continental airmass passes over ocean region
 - Primary productivity and export production spike

Fate of carbon exported from the mixed layer or euphotic zone - 1

 Fluxes of sinking particles decrease very rapidly with depth

Fate of carbon exported from the mixed layer or euphotic zone - 2

 P1 and P3 occupied for ~5 days; productivity is very high (50-150 mmol m⁻² day⁻¹) (Cassar et al., 2011)

• And sediment trap fluxes:

Site i.d.	Depth	Total		
1.4.	m	POC flux μmol m ⁻²	² d ^{−1}	
P1	140	6141.9		
	190	10,280.9		
	240	10,567.2	(10	
	290	8103.2		
P2	140	9508.2		
	190	5928.5		
	240	5578.3	(6)	
	290	5196.5		
P3	140	752.3		
	190	988.9	(0.	
	240	568.0	ιυ.	
	290	549.1		

AUV studies of shallow remineralization of sinking organic matter

- Optical studies of individual particles
 - Composition
 - Sinking rate
 - Vertical flux
 - Lateral advection
 - Change in properties with depth to characterize breakdown

Patch experiments

Objective: track an upper ocean ecosystem for 1-2 weeks and observe its biogeochemical evolution in response to physical forcing

Standard shipboard mode

- Inject a patch of SF₆
- Inject iron or not, depending on objectives
- Continuously measure SF₆ to identify THE patch
- Make physical and biogeochemical observations: O₂, DIC, nutrients, optical properties, flux terms (gross photosynthesis, net community production, respiration)
- Characterize evolution of ecosystem in response to physics and biogeochemical dynamics

Possible AUV modes

- Ultra mode: AUV's inject tracer, measure tracer to track patch
- Dynamics mode:
 - Team of AUV's identify dynamical feature (ring), tracks feature
- Minimalist mode: AUV's identify surface feature from heterogeneity

GasEx III patch experiment, Atlantic Subantarctic

Figure 6. Time series of surface, underway $\Delta O_2/Ar$ measurements during patch 2 from 22 March to 6 April 2008. Gray bars indicate local night. Red line segments indicate measurements inside the patch when underway SF₆ concentrations were greater than 75 fmol L^{-1} during 22–27 March, greater than 25 fmol L^{-1} during 27 March to 1 April, or greater than 10 fmol L^{-1} during 1–6 April. Black points show discrete, mixed layer $\Delta O_2/Ar$ measurements. Straight lines show linear regressions of 1 h binned averages of in-patch data with slopes and errors indicated.

asef

Figure 2. Time series of surface, underway $\Delta O_2/Ar$ measurements during patch 1. Gray bars indicate local night. Red line segments indicate measurements inside the patch when underway SF₆ concentrations were greater than 30 fmol L⁻¹. Black points show discrete $\Delta O_2/Ar$ measurements. Straight line shows linear regression of 1 h binned averages of in-patch data with slope and error indicated. Underway $\Delta O_2/Ar$ measurements of patch 1 ended on 13 March to repair a fault in the system.

Summary of questions

- Sources of nutrients in the subtropical gyre?
- Evolution of local ecosystems in response to synoptic forcing
- Evolution of local ecosystems in response to other physical forcing and biogeochemical variability
- Seasonal net carbon production in the mixed layer and euphotic zone
- Biology and dynamics of sinking particles

Minority view: for ocean biogeochemistry, new sensors can be more important than command and control, depending on experiment

- High precision DIC, NO₃-, O₂, total gas content
- Optical sensors for flow cytometry, fast repetition rate fluorometry...

Background: biological and chemical cycles in the world's oceans

Time period accessed by O₂ balance ~ 1 week

Some details regarding the calculation of net community production

- O₂ in the mixed layer is supersaturated as because of physical processes
 - Measure Ar supersaturation and correct O₂ supersaturation accordingly
- Some assumptions:
 - Steady state
 - No mixing with water below the mixed layer
- Estimate gas transfer velocity and calculate O₂ efflux to atmosphere

Other sources of information about rates of NCP and carbon export

- Seasonal drawdown of dissolved inorganic carbon or nutrients (seasonal timescale)
- Sediment traps
- 234Th/C ratios and fluxes
- ¹⁵NO₃ assimilation