Wednesday, October 9, 13

TOMORROW

www.sharkbait.co.uk/frontstories/front_images/tahitiDrollet.JPG

www.sharkbait.co.uk/frontstories/front_images/tahitiDrollet.JPG

EMERGENT TECHNOLOGIES GONVERGING IN THE OCEANS ==> EXPONENTIALLY INCREASING CAPACITY TO WORK WITHIN !

Wednesday, October 9, 13

www.sharkbait.co.uk/frontstories/front_images/tahitiDrollet.JPG

www.shadowrobot.com/images/gallerys/handC-hires/HandC_Bulb_03.jpg

0

www.shadowrobot.com/images/gallerys/handC-hires/HandC_Bulb_03.jpg

Wednesday, October 9, 13

wemf.files.wordpress.com/2009/11/wmf3dcamera1.jpg

and Sundry Job

Wednesday, October 9, 13

4k

ECOGENOMICS

Wednesday, October 9, 13

daphnia.cgb.indiana.edu/

Ecogenomic Sensor

ECOGENOMICS

OPTICAL FIBER

redit: Neil Baril, Penn State This photo shows a glass fiber with a sundle of semiconductor wires emanating rom it. Each wire is just 2 microns in diameter — 20 times smaller than a human sair. The glass fiber is glowing from blue

Wednesday, October 9, 13

Veptune Canada

Juan de Fuca Plate Portland

Seattle

Pacific City

Newport

000

DELIVERING ABUNDANT **POWER AND** BANDWIDTH INTO THE OCEAN WILL DRAMATICALLY ACCELERATE RATES OF TECHNOLOGICAL ADAPTATION & INNOVATION

Regional Scale Nodes Potential Expansion Nodes NEPTUNE Canada Nodes Shore Stations

Coastal Mooring

Cabled Coastal Mooring

Veptune Canada

Juan de Fuca Plate Portland

Seattle

Pacific City

Newport

00

NATIONAL SCIENCE FOUNDATION'S

OCEAN OBSERVATORIES INITIATIVE

Wednesday, October 9, 13

FACILITATED BY THE CONSORTIUM FOR OCEAN LEADERSHIP ARGENTINE BASIN

42°S

SOUTHERN OCEAN

55°S

REGIONAL SCALE NODES ENDURANCE ARRAY

cev

IRMINGER SEA

60°N

PIONEER ARRAY

40°N

70°W

n

http://www.whoi.edu/ooi_cgsn/endurance-array?tid=1621&cid=107169&article=43286

Wednesday, October 9, 13

OOI Pioneer Array Mesoscale Array (Gliders) Adaptive Array (AUVs) Frontal Array (moorings) MCCO upgrade (WHOI) NOAA buoy met upgrades Existing Assets NOAA buoy NOAA C-man stations NERACOOS buoy

- Line W moorings (WHOI)
 - SIO/CDIP buoy
 - MVCO (WHOI) LISICOS mooring (UConn) LEO -15 (Rutgers) Rutgers glider Browns Bank transect (BIO)

 \sim

- Northeast Channel transect (BIO) Sentinel benthic study sites: NEBO Project (WHOI)
- Oleander Project

Processes

Schematic winter circulation Cross-shelf exchange

POWER BANDWIDTH High Definition Video High Frequency Acoustics Adaptive Sampling Ecogenomics Charging Mobile Platforms Subsea Cloud Computing Subsea Mechtronics Remotely Operated Vehicles Photonic Sensors Colics Solo

200

rical power

wandy. Idry

Wednesday, October 9, 13

Climate Change

Ocean Acidification

Subduction Zone

Spreading Centers

Wednesday, October 9, 13

SCIENCE DRIVERS

Dissolved Oxygen

Carbon Cycle

Coastal Upwelling

Bathymetric Forcing

Seismic Activity

Gas Hydrates

AXIAL SEAMOUNT

Wednesday, October 9, 13

Wednesday, October 9, 13

AXIAL SEAMOUNT

0 0

0

BIOGEOCHEMICAL FLUX ARRAY

LONGTERM MAPPING OF AXIAL SEAMOUNT'S ENTIRE ECOSYSTEM INCLUDING RESPONSE TO UNDERWATER ERUPTION

AUV MULTI-DEPTH MAPPING MISSIONS

Wednesday, October 9, 13

45 km

GUDER

Surface Buoys with RF Communications

RSN CABLED MOORINGS

3B Axial Volcano

3A

200 Méter Platform

Deep Water Profiler

3000 m to ~ 200 m

Primary Node

Local sensor networks 🚽 Deep Water **Profiler**

ROV

Laid cables

Mooring Seafloor Sensors

DEEP PROFILING MOORING: include an instrumented McLane profiler making

2 AV

multiple trips daily - inductive couple allows recharge and data download, changing of sampling

ADAPTIVE SAMPLING WITH

HIGH POWER & BANDWIDTH MOORINGS

Wednesday, October 9, 13

RSN CABLED MOORINGS

3B

Deep Water Profiler

3A

Shallow Water Profiler

Primary Node

Local sensor networks

ROV Laid cables

cev RSN SHALLOW PROFILER: a novel two-legged mooring with an instrumented platform at 200 m and an instrumented shallow winched profiler. Cable allows real-time adaptive sampling.

RSN CABLED MOORINGS

Deep Water Profiler

3A

3B

200 Meter Platform Primary

Local sensor networks

ROV Laid cables

Node

Wednesday, October 9, 13

cev

RSN CABLED MOORINGS PN3B

PN3A

Deep Water Profiler

Mooring Seafloor Sensors

Primary

Node

Seafloor Sensors

Local sensor networks

ROV Laid cables

SEAFLOOR PLATFORM: The junction boxes provide I Gbs and 374 kV to an array of instruments on the seafloor to measure water column properties.

Wednesday, October 9, 13

cev

Cabled Slope Base Moorings 200 m Platform & Shallow Profiler Deep Profiler Seafloor Platform

Surface Mooring

Deep Profiler

2900 m Slope Base - PNIA

200m Platform & Shallow Water Profiler

Deep Profiler

environmental parameters (e.g. CO_2 , pH, nitrate, O_2 , chlorophyll) from 3000-80 water depth.

WATER LINE

AXIAL SEAMOUNT

Wednesday, October 9, 13

Bottom Pressure Tilt

Hydrophone

Broadband Seismometer

CALDERA

CENTER

Short-period Seismometer

Osmo Fluid Sampler

3D Thermistor Array

Acoustic Modem

ASHES Vent Field

HD Video Camera & Lights

Short-period Seismometer

-1300

Bathymetry: MBARI AUV Data from D. Caress and D. Clague EM302 Multi-beam from University of Washington 10m contour lines

-2700

AXIAL CALDERA: Infrastructure outlined in blue was deployed during the VISIONS'I 3 expedition and fully tested. All is functional and awaiting connection to PN3B

Wednesday, October 9, 13

250m M|03B

1200 m

3850 m

MJ03F

3400 m

Fluid - Microbial DNA Sampler Mass Spectrometer Digital Still Camera and Lights Temperature Resistivity H2 pH - H2S - H2 - Temperature

Broadband Seismometer

Hydrophone

Bottom Pressure Tilt

Acoustic Modem

MJ03E

PN3B

MJ03C

Short-period Seismometer

2030 m

INTERNATIONAL

DISTRICT

Vent Field

Current Meter - 3D Single Point

MJ03D

Short-period Seismometer

Bottom Pressure Tilt

Short-period Seismometer

NODES and J-BOXES Primary Node Medium Power J-Box **CABLE TYPES RSN** Primary Medium Power Electro-Optical **Electrical Extension**

Regional Scale Nodes 🗖 🗕 🚽 Potential Expansion Nodes NEPTUNE Canada Nodes 🗖 High Powered Mooring 🔘 Coastal Mooring o Cabled Coastal Mooring Shore Stations 💧 🏠 RSN Cyber POP

HDRATE G E

000

HYDRATE RIDGE PNIB

Short-period Seismometer

LJOIB

O

Summit I

Broadband Seismometer

O.

Hydrophone

Current Meter - 3D Single Point Bottom Pressure Recorder

Data sources: University of Washington, School of Oceanography Im contour lines

770

Short-period Seismometer

0

Summit 2

554 m

542 m

ADCP

C

Camera and Lights

Mass Spectrometer

OSMO Sampler

Fluid Sampler - Temp

LVOIB

MJOIB

Short-period Seismometer

HYDRATE RIDGE DETAIL

ъ

Broadband Seismometer
Hydrophone

Bottom Pressure Recorder

Summit I

Sale

Im

SSAM

Current Meter - 3D Single Pt.

-770

Data sources: University of Washington, School of Oceanography Im contour lines

-850

0

0

Summit 2

MJOIB

OSMO Sampler

Fluid Sampler - Temp

NODES and J-BOXES

Low Voltage Node

- Medium Power J-Box
- Low Voltage J-Box

CABLE TYPES

High Power Electro-Optical

- Medium Power Electro-Optical
 - **Electrical Extension**

Current Meter - 3D Single Point

Bottom Pressure Recorder

Earth's Carbon Reserves: Importance of methane hydrates

Quantities in gigatons of carbon

atmosphere	4
detrital organic	60
peat	500
terrestrial biosphere	830
dissolved organic matter	980
soils	1400
fossil fuels	5000
gas hydrate	10,000

Gas Hydrates 10,000 gigatons of carbon

ECOGENOMICS

OPTICAL FIBER

This photo shows a glass fiber with a bundle of semiconductor wires emanating from it. Each wire is just 2 microns in diameter — 20 times smaller than a human hair. The glass fiber is glowing from blue aver linking

