Recent & Historical Geochronology Instrument Developments @ JPL

Paula Grunthaner Special thanks to J. P. Kirby Jet Propulsion Laboratory, California Institute of Technology

- What are the challenges for an *in situ* system?
- What approaches have been (or are being) tried?
 - Intent is to provide a sense of the development status of geochronology instrumentation
- What challenges do these developments face going forward to flight?

- Chronological techniques not applicable to all rock types
- Sample must be free of post-crystallization disturbances
- Dust contamination
- As a minimum, expose fresh surface
- Desireable, pre-selection of grains

In Situ Geochronometer Developments

- Luminescence/ESR technique
 - JPL, Ulmer Systems, Oklahoma State U, McMaster U, LPI
- ⁸⁷Rb ⁸⁷Sr decay
 - JPL, U Pittsburgh \rightarrow Scott Anderson's talk
 - JPL, U. Wisconsin, Tangent Technologies, OI Analytical
- ⁴⁰K ⁴⁰Ar decay & cosmogenic nucleotide buildup (³He, ^{20,21,22}Ne, ^{36,38}Ar)
 - UA, JPL, LANL → Tim Swindle's talk

Luminescence and Electron-spin Resonance Dating S. Kim (JPL), S. McKeever (Oklahoma State U), W. Rink (McMaster U), S. Clifford, LPI, A. Yen (JPL)

- Dosimetric approach that integrates TL, OSL, and ESR
- All 3 used for dating time since some dynamic geological resetting event
 - Time since last exposure to sunlight (solar reset) and thus burial ages of soils in sediments
 - Time since last thermal event such as volcanic heating, mechanical stresses
 - Measures the accumulation of absorbed radiation dose within mineral grains as f(time)
 - Ionizing radiation accumulates trapped charge in the mineral, which is depleted when exposed to solar radiation (resetting the clock)
 - Luminescence intensity α dose since last exposure to sunlight α depositional age
 - Utility: dating eolian, fluvial, periglacial, impact, volcanic processes spanning the past 100 ka 1 Ma)

Applicability of techniques, as practiced on Earth

	TL	OSL	EPR
Eolian/Fluvial deposits (age of burial, solar reset)	М	Η	L
Volcanic Rocks (crystallization age)	Η	Η	L
Sedimentary Volatile Deposits (age of crystallization of carbonates, sulfates)	L	L	Н
Dust Particles in Polar Ice Caps (age of incorporation into ice)	L	Η	L
Material characterization	L	L	Н

Applicability H: High M: Medium L: low

Luminescence and Electron-spin Resonance Dating Breadboard Concept

Luminescence and Electron-spin Resonance Dating Development Status—Sample Preparation Unit

Luminescence and Electron-spin Resonance Dating Development Status—ESR Spectrometer subsystem

Luminescence and Electron-spin Resonance Dating Development Status— OSL and TL subsystem

Luminescence and Electron-spin Resonance Dating Challenges Going Forward

- No currently funded task
 - JPL PI submitted PIDDP on a different topic because geochronology not a priority in the NRA
- Science— Do we understand dosimetry on Mars well enough?
 - On Earth, use mineral separates; on Mars likely polymineralic
 - On Mars, lower natural dose rate but 1000x higher cosmic ray flux
 - Necessitates need to know burial rate
 - Gradual accumulation over time => variable dose rate
 - Efficiency of solar bleaching in low T of Mars

Rb-Sr Geochronology

- A few reminders about the technique
 - ⁸⁷Rb to ⁸⁷Sr by β^- decay
 - $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i = 0$ not valid nor is it possible to estimate. So ratio is calculated by measuring 2 or more minerals in same rock with spread in Rb/Sr ratios
 - Measurement masses are 85, 86, 87. Use fact that ⁸⁷Rb/⁸⁵Rb is constant in all SS materials to derive desired D_r/D_s and P/D_s for isochrons

Laser Ablated – Electron Impact Ionization – MS for Geochronology (Rb-Sr) M. Sinha (JPL), B. Beard (U WI), M. Wadsworth (Tangent), OI Analytica

- Laser-ablation and sampling of neutrals only
 - Potential for cleaner mineral separates & better understanding of internal isochrons
 - 10^2-10^6 more neutrals than ions; may better represent elemental abundance
- Electron impact ionization of neutrals creates 100–1000 µs ion pulse
- Non-scanning magnetic sector MS with custom focal plane array detector integrates entire ion pulse simultaneously
- Estimated precision of age dating: 95% confidence of ± 150 Ma for a 500 Ma rock

Direct Ion Detection with a Modified CCD Focal Plane Array

- Linear array of CCD pixels
- Photodiode replaced by a capacitive sensing element that serves as ion detector
- Capacitive element is coupled to CCD shift register and creates a packet of signal charge proportional to the charge on the capacitor
- 2nd generation CCD improves sensitivity, reduces noise, increases dynamic range and resolution

Laser Ablated – Electron Impact Ionization – MS for Geochronology Sinha, et al

Laser Ablated – Electron Impact Ionization – MS for Geochronology Sinha, et al

Laser Ablated – Electron Impact Ionization – MS for Geochronology Sinha, et al

Krypton Isotope Measurement with CCD Direct-Ion-Detector

Pixel Number

Error Estimates for Rb-Sr ratios

	Plagioclase	Clinopyroxen e	Ortho- pyroxene	Olivine	
Sr ppm	100	10	3	1.5	
⁸⁷ Sr/ ⁸⁶ Sr and % error	$\begin{array}{c} 0.70537 \pm \\ 0.0793 \ \% \end{array}$	$\begin{array}{c} 0.70990 \pm \\ 0.1770 \ \% \end{array}$	0.71134 ± 0.5499 %	$\begin{array}{c} 0.70836 \pm \\ 0.5869 \% \end{array}$	yesterday $\pm 1\%$
⁸⁷ Rb/ ⁸⁶ Sr and % error	0.0513 ± 1.277 %	0.687 ± 0.349 %	0.8901 ± 0.5869 %	0.4717 ± 1.203 %	±10%

- Assumes 1x10⁶ atoms/laser shot, 10% of atoms delivered to ion source, 1 in 1000 atoms ionized, 20% of ions arrive at detector, ions accumulated for 100 shots, all minerals had (⁸⁷Sr/⁸⁶Sr)ⁱ of 0.705 and are 500 Ma old
- For a 4-mineral isochron using the above estimates, 95% confidence of age error \pm 140 Ma for 500 Ma rock

Challenges Going Forward for Both Rb-Sr Systems

- Rb and Sr must be ionized in direct proportion to their abundance in the sample
- Laser ablation for sampling
- Potential for cleaner mineral separates & better understanding of internal isochrons
- Both techniques sample neutrals, not ions; 10²–10⁶ more neutrals than ions; may better represent elemental abundance
- But, laser ablation (w/ICPMS) has shown significant elemental fractionation for elements of different volatility. Neutral generation is thermal.
 - Rb (688 °C) and Sr (1382 °C) have very different melting points
 - The extent of elemental fractionation must be characterized for different minerals
- Ionization efficiencies must be understood. In this respect, electron impact is more commonly used and may be better understood than resonant ionization (but, heck, I'm not sure)
- Resonant ionization is highly sensitive for ionization and highly selective. Electron impact is not selective and can, therefore, be used to characterize other neutral species.
- Both approaches must develop differentially pumped systems to keep sample outside (or bring the sample inside and pump down each time)

- There are several age dating systems operating at TRL 4 with potential to meet performance requirements
- None of these systems have yet demonstrated they can delivery the performance demanded
 - Elemental sampling and/or ionization bias effects need to be examined
 - H/W needs miniaturization & subsystems
- KISS should identify the tall tent poles that may not be funded under existing PIDDP/MIDP/etc funds
- To paraphrase Gregg, development needs to proceed *tout de suite*