Astronomy Data Landscape and Observable Parameter Spaces

S. George Djorgovski, Caltech

KISS Short Course
Data-Driven Approaches to Searches for Technosignatures
May 2019
Exponential Growth of Data Volumes... and Complexity on Moore’s law time scales

From data poverty to data glut
From data sets to data streams
From static to dynamic, evolving data
From anytime to real-time analysis and discovery
From centralized to distributed resources
From ownership of data to ownership of expertise

Understanding of complex phenomena requires complex data!
What is Fundamentally New Here?

- The **information volumes and rates** grow exponentially

 > Most data will never be seen by **humans**

- A great increase in the data **information content**

 > Data driven vs. hypothesis driven science

- A great increase in the **information complexity**

 > There are patterns in the data that cannot be comprehended by **humans directly**
The Evolving Paths to Knowledge

• The First Paradigm: Experiment/Measurement

• The Second Paradigm: Analytical Theory

• The Third Paradigm: Numerical Simulations

• The Fourth Paradigm: Data-Driven Science
Hypothesis-driven science

Data-driven science

The two approaches are complementary
The Evolving Data-Rich Astronomy

An example of a “Big Data” science driven by the advances in computing/information technology

MB GB TB PB EB

CCDs Surveys VO AstroInfo
Image Proc. Pipelines Databases
Machine Learning LSST, SKA…

Key challenges: data heterogeneity and complexity
How Much Data* is There in Astronomy?

* Archived, curated, accessible

- My best guesstimate (early/mid 2019): \(\sim 200 \text{ PB } \times 2^{\pm 1} \)
 - Estimated data rate > 100 TB/day
- Most data come from sky surveys
- Both data volumes and data rates grow exponentially, with a \textit{doubling time} \(\sim 1.5 \text{ years} \)
- Even more important is the growth of \textit{data complexity} and \textit{data quality} (information content)

- For comparison:
 - Human Genome < 1 GB
 - Human Memory < 1 GB (?)
 - 1 TB \sim 2 \text{ million books}
 - Human Bandwidth \sim 1 \text{ TB / year (\pm)}
There Are Lots Of Stars In The Sky...

Modern sky surveys obtain $\sim 10^{15} - 10^{16}$ bytes of images, catalog $\sim 10^9$ objects (stars, galaxies, etc.), and measure $\sim 10^2 - 10^3$ numbers for each.

... and then do it again, and again, ...
The Panchromatic Universe

Near IR starlight

Far IR warm dust

Hα ionized gas

X-Ray accretion
Sky Surveys: Data Volumes

<table>
<thead>
<tr>
<th>Sky Survey Projects</th>
<th>Data Volume</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPOSS (The Palomar Digital Sky Survey)</td>
<td>3 TB</td>
<td>1990s</td>
</tr>
<tr>
<td>2MASS (The Two Micron All-Sky Survey)</td>
<td>10 TB</td>
<td>2000s</td>
</tr>
<tr>
<td>GBT (Green Bank Telescope)</td>
<td>20 PB</td>
<td>2010s</td>
</tr>
<tr>
<td>GALEX (The Galaxy Evolution Explorer)</td>
<td>30 TB</td>
<td></td>
</tr>
<tr>
<td>SDSS (The Sloan Digital Sky Survey)</td>
<td>170 TB (DR15)</td>
<td></td>
</tr>
<tr>
<td>SkyMapper Southern Sky Survey</td>
<td>500 TB</td>
<td></td>
</tr>
<tr>
<td>PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)</td>
<td>~ 40 PB expected</td>
<td>ZTF: ~ 1 PB/yr</td>
</tr>
<tr>
<td>LSST (The Large Synoptic Survey Telescope)</td>
<td>~ 200 PB expected</td>
<td>2020s</td>
</tr>
<tr>
<td>SKA (The Square Kilometer Array)</td>
<td>~ 4.6 EB expected</td>
<td></td>
</tr>
</tbody>
</table>

(from Zhang 2015)
Some “Local” Producers:

- **CRTS (all surveys, per A. Drake):**
 - ~ 100 TB total to date
 - Current data rate ~ 25 TB/yr

- **ZTF (3 year survey, per F. Masci):**
 - ~ 3.2 PB total archived
 - Current data rate ~ 1 TB/night (images), real-time data products ~ 4 TB/night

- **OVRO (per G. Hallinan):**
 - LWA: Raw data rate ~ 12 PB/day, archived ~ 50 TB/day ~ 18 PB/yr
 - MWA: ~ Raw data rate ~ 0.65 PB/day, archived ~ 27 PB/yr
 - DSA: Raw data rate ~ 7 PB/day, much less archived

Some space missions:

- **Kepler** ~ 20 TB
- **GALEX** ~ 30 TB
- **Gaia, 5-yr mission:** ~ 200 TB
Zwicky Transient Facility (2017-)

- New camera on Palomar Oschin 48” with 47 deg² field of view
- 3750 deg² / hr to 20.5-21 mag (1.2 TB / night)
- Full northern sky (~12,000 deg²) every three nights
- Galactic Plane every night
- Over 3 years: 3 PB, 750 billion detections, ~1000 detections / src
- First megaevent survey: 10^6 alerts per night (Apr 2018)
ZTF = 0.1 LSST

<table>
<thead>
<tr>
<th></th>
<th>ZTF</th>
<th>LSST</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of sources</td>
<td>1 billion</td>
<td>37 billion</td>
</tr>
<tr>
<td>No. of detections</td>
<td>1 trillion</td>
<td>37 trillion</td>
</tr>
<tr>
<td>Annual visits per source</td>
<td>1000 (2+1 filters)</td>
<td>100 (6 filters)</td>
</tr>
<tr>
<td>No. of pixels</td>
<td>600 million (1320 cm² CCDs)</td>
<td>3.2 billion (3200 cm² CCDs)</td>
</tr>
<tr>
<td>Field of view</td>
<td>47 deg²</td>
<td>9 deg²</td>
</tr>
<tr>
<td>Hourly survey rate</td>
<td>3750 deg²</td>
<td>1000 deg²</td>
</tr>
<tr>
<td>Nightly alert rate</td>
<td>1 million</td>
<td>10 million</td>
</tr>
<tr>
<td>Nightly data rate</td>
<td>1.4 TB</td>
<td>15 TB</td>
</tr>
</tbody>
</table>
The Virtual Observatory Concept

• Envisioned as a complete, dynamical, distributed, open research environment for the new astronomy with massive and complex data sets
 – Provide and federate content (data, metadata) services, standards, and analysis/compute services
 – Develop and provide data exploration and discovery tools (…)
 – Today it is the global data grid of astronomy
 – A successful example of a science Cyber-Infrastructure
IVOA: The Virtual Observatory Reified

• Formed in 2002 to facilitate the international collaborative effort needed to enable integrated access to astronomical archives
• 21 international members
• Working Groups and Interest Groups overseen by Technical Coordination Group reporting to Executive Committee:
 - Applications
 - Data Access Layer
 - Data Models
 - Grid and Web Services
 - Registry
 - Semantics
 - Data Curation and Preservation
 - Knowledge Discovery in Databases
 - Education
 - Operations
 - Solar System
 - Theory
 - Time Domain
• Committee for Science Priorities
• Engage with big projects

IVOA.net
Resources at http://ivoa.net

A compilation of tools and services

IVOA is now mainly a standards coordination body
AstroInformatics is essentially astronomical applications of Data Science

- While VO became a global data grid of astronomy, astroinformatics focuses on the knowledge discovery tools.
- It includes a growing community of scientists, both as contributors and as users.
- Like other X-Informatics ($X = \text{bio, geo, ...}$) it is a bridge between astronomy and data science, and for the methodology sharing with other fields.
AstroInformatics

It contains all of the components of Data Science, in their astronomical applications, and their interconnections

The 10th international conference, astroinformatics2019.org, at Caltech, June 24-27, 2019
Exploration of Parameter Spaces is a Central Problem of Data Science

Clustering, classification, correlation and outlier searches, ...

Machine Learning Is the Key Methodology

Challenges:

• Algorithm and data model choices
• Data incompleteness
• Feature selection and dimensionality reduction
• Uncertainty estimation
• Scalability
• Visualization

... etc.

Especially with the data dimensionality
Pattern or structure (Correlations, Clustering, Outliers, etc.) Discovery in High-Dimensional Parameter Spaces

D >> 3 parameter/feature space hypercube

High-D data cloud: mostly noise, with an arbitrary PDF distribution

Missing data

Data heterogeneity

But in some corner of some subset of dimensions of this data space, there is something ≠ noise, i.e., a statistically significant structure with an unknown form

Mapping the Entropy of Large Data Spaces?
Zwicky’s concept: explore all possible combinations of the relevant parameters in a given problem; these correspond to the individual cells in a “Morphological Box”

Example: Zwicky’s discovery of the compact star-forming dwarfs
Systematic Exploration of the Observable Parameter Spaces (OPS)

Its axes are defined by the observable quantities

Every observation, surveys included, carves out a hypervolume in the OPS

Technology opens new domains of the OPS New discoveries
Measurements Parameter Space

Colors of stars and quasars

Dimensionality ≤ the number of observed quantities

Physical Parameter Space

Fundamental Plane of hot stellar systems

Both are populated by objects or events
A Familiar Example: HR Diagram

Observable
Color-magnitude diagram

Theoretical
Temperature-Luminosity Space

• Not filled uniformly: clustering indicates different families
• Empty regions may be due to selection effects or physics
• Clustering + dimensionality reduction = correlations
Mapping the Data Parameter Spaces

- Objects of a particular type (e.g., stars, galaxies, SNe, Quasars, ...) may occupy only specific regions of a parameter space, and form clusters.

- If enough known, training examples are known, this can be used for an automated, supervised classification, or the searches for the rare, but known objects (e.g., quasars).

- Unsupervised clustering (let the data tell you what clusters are present) may reveal previously unknown types of objects, as outliers from the known clusters.
Model-Based Outlier Search and Surprises

Sometimes we know where to look for outliers on the basis of a prior knowledge, e.g., quasars or brown dwarfs in a color space.

... but sometimes you find something unexpected:

Peculiar Lo-BAL QSO

Expected high-z quasar region

Typical z > 4 Quasar
Classification, Clustering, and Outliers

• **Supervised learning (classification):** use a known set of objects to train a classifier
 – Hard to find previously unknown things

• **Unsupervised learning (clustering):** let the data tell you how many different kinds of things are there
 – Could find previously unknown types as outliers

There is no “one size fits all”: different choices for different problems

Supervised Algorithms
- Neural Networks (MLP)
- Boltzmann Machines
- RBM
- Decision Trees
- Nearest Neighbor
- Naive Bayes Classifiers
- Bayesian Networks
- Gaussian Processes
- Regression

Unsupervised Algorithms
- K-Means
- Self-Organizing Maps
- RDF
- Fuzzy Clustering
- CURE
- ROCK
- Vector Quantization
- Probabilistic Principal Surfaces

...
What is an Outlier?

It depends on the underlying probability distribution, and they are seldom Gaussian.
Clustering and Searches for Outliers

Sometimes this is easy, not critically dependent on the assumed probability density distributions of the clusters.

But sometimes it isn’t.

Having the right cluster descriptors, number of clusters, and metric of this feature space is crucial.
Parameter Spaces for the Time Domain

(in addition to everything else: flux, wavelength, etc.)

• For *surveys*:
 o Total exposure per pointing
 o Number of exposures per pointing
 o How to characterize the cadence?
 ➔ Window function(s)
 ➔ Inevitable biases

• For *objects/events* ~ light curves:
 o Significance of periodicity, periods
 o Descriptors of the power spectrum (e.g., power law)
 o Amplitudes and their statistical descriptors
 ... etc. – over 70 parameters defined so far, but which ones are the minimum / optimal set?
From Light Curves to Feature Vectors

- We compute ~ 70 parameters and statistical measures for each light curve: amplitudes, moments, periodicity, etc.
- This turns heterogeneous light curves into homogeneous feature vectors in the parameter space.
- Apply a variety of automated classification methods.
Variability Feature Space

- Generate homogeneous representation of time series by defining a number of **descriptive parameters**:
 - Morphology (shape): skew, kurtosis
 - Scale: Median absolute deviation, biweight midvar.
 - Variability: Stetson, Abbe, von Neumann
 - Timescale: periodicity, coherence, characteristic
 - Trends: Thiel-Sen
 - Autocorrelation: Durbin-Watson
 - Long-term memory: Hurst exponent
 - Nonlinearity: Teraesvirta
 - Chaos: Lyapunov exponent
 - Models: HMM, CAR, Fourier decomposition, wavelets

- Defines a **high-dimensional feature space** to characterize the temporal behavior
Feature Selection Algorithms

Most clustering and classification algorithms scale poorly with the dimensionality of the feature spaces. Feature selection is one set of dimensionality reduction techniques.

- **Filter methods** apply a statistical measure to assign a scoring to each feature, usually independently (univariate). The features are ranked by the score.
- **Wrapper methods** look for a set of features where different feature combinations are evaluated and compared to other combinations.
- **Embedded methods** learn which features best contribute to the accuracy of the model while the model is being created.
- The **scoring criterion** depends on the goal, e.g.:
 - Accurate predictions for the regression searches
 - Classification discrimination power for clustering
Feature Selection Algorithms

Optimal sets of features may be different for

• Different regression target variables:
 e.g., \(y_1 = f_1(x_i, x_j, x_k, ...) \), \(y_2 = f_2(x_p, x_q, x_r, ...) \), etc.

• Different classification tasks:
 e.g., \(\text{Class} (A, B) = f(x_a, x_b, x_c, ...) \), \(\text{Class} (A, B, C) = f(x_d, x_e, x_f, ...) \)

• Different regression or classification algorithms:
 e.g., ANN, DT, RF, SVM, ...

 ... so they have to be optimized in each individual case

See:

Donalek et al., IEEE BigData 2013, p. 35 = arxiv/1310.1976
Feature Selection Algorithms: Examples

• **Fast Relief Algorithm** (aka ReliefF) ranks features according to how well their values distinguish between instances.

• **Fisher Discriminant Ratio** (FDR) ranks features according to their classification discriminatory power. It can be applied only to binary classification problems.

• **Correlation-based Feature Selection** (CFS) is a wrapper method which selects features that have low redundancy (i.e., not correlated with each other) and is strongly predictive of a class.

• **Fast Correlation Based Filter** (FCBF) is a supervised filter algorithm, similar to the CFS. Searches for features that have predominant correlation with the class. Can be computationally efficient with very high dimensional data.

• **Multi Class Feature Selection** (MCFS) is an unsupervised method based on the spectral analysis of the data. ... etc.
Optimizing Feature Selection

Rank features in the order of classification quality for a given classification problem, e.g., RR Lyrae vs. WUMa.
Examples from Astronomy:

Used Random Forests algorithm to classify SDSS galaxies using spectroscopic properties. Defined a “Weirdness” parameter to quantify the outliers.

All outliers found are members of the known classes of objects.
Examples from Astronomy:

Used the K-Means algorithm to identify 3 principal clusters: slow rise, fast rise – fast decay, and fast rise – slow decay.
To Recap:

• Astronomy is now well into the **Petascale data regime**, and data volumes and rates grow exponentially according to Moore’s Law
 – Most data come from the large surveys
 – The biggest growth now is in the time domain
 – This is true across all wavelengths
 – Growth of **data complexity** and **information content**

• Derived source catalogs typically contain ~ 10^9 **objects**, with ~ $10^2 - 10^3$ **parameters** (features) each
 – Data fusion of different surveys increases the data complexity and discovery potential
 – We use **Machine Learning** to process and analyze the data, including source classification and selection of **interesting targets** for the follow-up studies