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Exponential
Growth of
Data
Volumes

, .
on Moore’s law time scales Understanding of
complex phenomena

-rom data poverty to data glut  requires complex data!
-rom data sets to data streams

From static to dynamic, evolving data

-rom anytime to real-time analysis and discovery
-rom centralized to distributed resources

-rom ownership of data to ownership of expertise

Djorgovski



What is Fundamentally New Here?

The information volumes and
rates grow exponentially

—> Most data will never be seen by
humans

* A greatincrease in the data information content
—> Data driven vs. hypothesis driven science

* Agreatincrease inthe
information complexity
—> There are patterns in the data that

cannot be comprehended by
humans directly

Djorgovski



The Evolving Paths to Knowledge

GAILILEVS

The First Paradlgm (\A\lL_ILTj\\Ss:
Experiment/Measurement

* The Second Paradigm:
Analytical Theory

The Third Paradigm:
Numerical Simulations

The Fourth Paradigm:
Data-Driven Science

Djorgovski



Hypothesis-driven science Data-driven science

[ Hypothesis/theory J [Data sets and streams}

'] )’

. Data exploration,
[Experlment }

Pattern discovery

. 2 2

{ Data analysis } [ Hypothesis/theory }
[ Understanding } [Data analysis }

4

[ Understanding }

The two approaches are
complementary

Djorgovski



The Evolving Data-Rich Astronomy

An example of a “Big Data” science driven by the
advances in computing/information technology

1980 1990 2000 2010 2020
MB GB B PB EB >
CCDs Surveys VO Astrolnfo
| o LSST,
mage roc: : SKA...
Pipelines
Databases

Machine Learning Al

Key challenges: data heterogeneity and complexity



How Much Data* is There in Astronomy?

* Archived, curated, accessible
* My best guesstimate (early/mid 2019):[~ 200 PB x 2i1]
— Estimated data rate > 100 TB/day

* Most data come from sky surveys

* Both data volumes and data rates grow
exponentially, with a doubling time ~ 1.5 years

* Even more important is the growth of data

complexity and data quality (information content)

* For comparison:
Human Genome < 1 GB
Human Memory < 1 GB (?)
1 TB ~ 2 million books
Human Bandwidth ~1TB [ year (%)

Djorgovski



There Are Lots Of Stars In The Sky...

Modern sky surveys obtain ~ 10%> — 10'® bytes of images,
catalog ~ 10° objects (stars, galaxies, etc.),
and measure ~ 102 — 103 numbers for each

... and then do it again, and again, ...

Gaia DR2 Catalog Image

Djorgovski
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Sky Surveys: Data Volumes

Sky Survey Projects Data Volume
DPOSS (The Palomar Digital Sky Survey) 3TB
1990s
2MASS (The Two Micron All-Sky Survey) 10TB
GBT (Green Bank Telescope) 20 PB
GALEX (The Galaxy Evolution Explorer) 30TB 2000s
SDSS (The Sloan Digital Sky Survey) 170 TB (DR15) 40-TB
SkyMapper Southern Sky Surve 500 TB
yMapp y y 2010s
PanSTARRS (The Panoramic Survey Telescope and Rapid ~40 PB
Response System) expected
ZTF: ~ 1 PB/yr
LSST (The Large Synoptic Survey Telescope) ~200 PB
expected 2020s
SKA (The Square Kilometer Array) ~4.6 EB
expected (from Zhang 2015)




Some “Local” Producers:

* CRTS (all surveys, per A. Drake):
o ~100 TB total to date
o Current data rate ~ 25 TB/yr

* ZTF (3 year survey, per F. Masci):
o ~ 3.2 PB total archived

o Current data rate ~ 1 TB/night (images), real-time data products
~ 4 TB/night

* OVRO (per G. Hallinan):

o LWA: Raw data rate ~ 12 PB/day, archived ~ 50 TB/day ~ 18 PB/yr
o MWA: ~ Raw data rate ~ 0.65 PB/day, archived ~ 27 PB/yr

o DSA: Raw data rate ~ 7 PB/day, much less archived

Some space missions:

< Kepler~20TB

< GALEX~30TB

<> Gaia, 5-yr mission: ~ 200 TB



o 2Zwicky Transient Facility (2017-)

e New camera on Palomar Oschin 48"
with 47 deg? field of view

e 3750 deg?/ hrto 20.5-21 mag (1.2 TB
/ night)

* Full northern sky (~12,000 deg?)
every three nights

e Galactic Plane every night

* Over 3 years: 3 PB, 750 billion
detections, ~1000 detections / src

* First megaevent survey: 10° alerts
per night (Apr 2018)

( I e I ’ eTF Matthew J. Graham November 7, 2017



S

ZTF = 0.1 LSST

F

(557

No. of sources 1 billion 37 billion
No. of detections 1 trillion 37 trillion
Annual visits per source 1000 (2+1 filters) 100 (6 filters)
No. of pixels 600 million 3.2 billion
(1320 cm? CCDs) (3200 cm? CCDs)
Field of view 47 deg? 9 deg?
Hourly survey rate 3750 deg? 1000 deg?
Nightly alert rate 1 million 10 million
Nightly data rate 1.4TB 15TB

(D @

Matthew J. Graham

November 7, 2017




The Virtual Observatory Concept

e Envisioned as a complete, dynamical, distributed, open
research environment for the new astronomy with massive

and complex data sets
— Provide and federate
content (data, metadata)
services, standards, and
analysis/compute services

— Develop and provide data
exploration and discovery
tools (...)

— Today it is the global data
grid of astronomy

— A successful example of a
science Cyber-Infrastructure

Djorgovski

VO: Conceptual Architecture




o IVOA: The Virtual Observatory Reified

Formed in 2002 to facilitate the international collaborative effort
needed to enable integrated access to astronomical archives

21 international members

Working Groups and Interest Groups overseen by Technical
Coordination Group reporting to Executive Committee:

» Applications > Data Curation and Preservation

» Data Access Layer > Knowledge Discovery in Databases

» Data Models > Education .

» Grid and Web Services » Qperations i % Chisa:/%
> Registry » Solar System ' svo Vo
» Semantics » Theory

> Time Domain @esa ’3’3
Committee for Science Priorities e

Engage with big projects

IVOA.net

( I % I ) eTF Matthew J. Graham November 7, 2017



Resources at http://ivoa.net

INTERNATIONAL VIRTUAL
OBSERVATORY ALLIANCE

Members

Astronomers Deployers

VO Applications for Astronomers

In this section, scientists can find available VO-compatible applications for their immediate
use to do science. The level of maturity of the applications depends on a high degree on
the level of maturity of the corresponding IVOA protocols and standards.. As a
consequence of the flexibility of the standards, several of the applications might overlap in

functionality. The IVOA does not manage or guarantee these services/tools.

Applications
(in alphabetical order)

Aladin
AppLauncher
CASSIS

CDS Xmatch Service
Data Discovery Tool
Filter Profile Service
Iris

Montage

Octet

SkyView

Specview

SPLAT

TAPHandle

Functionality
Search for Images:
Aladin, Datascope,
SkyView, VODesktop,
Data Discovery Tool
Search for Spectra:
Aladin,

CASSIS, Datascope,
SPLAT, Specview,
VOServices, VOSpec,
Data Discovery Tool

Search for Catalogues:

Aladin, Datascope,
TOPCAT, VODesktop,
Data Discovery Tool
Search for Time Series

VO-compliant Tools &
Services

DS9: Image visualiasation
GOSSIP: SED fitting
VirGO: Search for Images
and Spectra

IRAF: Image Reduction &
Analysis

World Wide Telescope
Gaia - Graphical
Astronomy and Image
Analysis

SIMBAD

TESELA

VizieR

A compilation of tools
and services

IVOA is now mainly
a standards
coordination body

Djorgovski



Astrolnformatics

is essentially astronomical applications of Data Science

DEIERT (=B Astrolnformatics WA dde]ae]11)Y

* While VO became a global data grid of astronomy,
astroinformatics focuses of the knowledge discovery tools

* Itincludes a growing community of scientists, both as
contributors and as users

* Like other X-Informatics (X = bio, geo, ... ) it is a bridge
between astronomy and data science, and for the
methodology sharing with other fields.



Astrolnformatics
It contains all of the components of Data Science, in their
astronomical applications, and their interconnections

Astroinformatics

Data Data
systems Analytics

HPC
... etc.

Data Analyti%

[ Machine Learning }

[ (Astro)Statistics }

[ Numerical Methods }

[ Visualization }
... etc. /

The 10t international conference,
astroinformatics2019.org, at Caltech, June 24-27, 2019



Survey-Based Astronomy

Survey Telescopes Data Reduction Pipeline Archive Database

C55171012:072652+4630200 | 11171466 |  63.03323 | 20171012.39 | 18.77 | no 2018-05-09 | 14639

O CSS171012:095044+641448 | 149.93362 |  64.24678 | 20171012.47 | 19.36 | yes | 2018-06-08 | 16377
L : y @ CS5171012:075222+652857 | 118.09216 |  65.48244 | 20171012.41 | 1849 | yes | 2018-05-17 | 19128

CS55171012:084704+593309 | 131.76754 |  59.55244 | 20171012.43 | 19.37 | yes | 2018-05-25 | 15507

CSS171012:172358+530024 | 260.99323 |  53.00658 | 20171012.12 | 18.73 |yes | 2018-06-19 | 11012

4 :: O « ® @ CSS171012:0844124531251 | 131.04870 5321413 | 20171012.43 | 17.29 | yes | 2018-05-25 11414

CSS171012:1644524443946 | 251.21538 | 44.66291 2017101210 | 17.80 | yes | 2018-06-19 | 12124

CS5171012:235710+401134 | 359.29246 | 40.19289 | 20171012.23 | 18.44  no 2018-06-19 | 12739

CS5171012:235703+395916 | 359.26183 |  38.98778 | 20171012.23 | 14.90 | no 2018-06-19 | 12034

CS5171012:010541+431030 |  16.42287 |  43.17505  20171012.28 | 19.03 yes | 2018-06-19 | 23148

CS8171012:003812+4401052 9.55193  40.18108  20171012.25 19.76 yes | 2018-06-19 12674

CSS8171012:001439+425157 3.66175 42.86579 | 2017101226 18.25 no 2018-06-19 21801

Source catalogs define

Image calibration, source finding feature spaces

and parametrization

v

Data Analysis, Target Selection Follow-up Telescopes
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4 ® 2z > 4 QSOs
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Modeling, Machine Learning...



Exploration of Parameter Spaces is a Central
Problem of Data Science

Clustering, classification, correlation and outlier searches, ...

d Machine Learning Is the Key Methodology

Challenges:

* Algorithm and data model
choices

* Dataincompleteness

 Feature selection and
dimensionality reduction

* Uncertainty estimation
* Scalability

: ... Especially
- Visualization 7 .. "

.. etc. dimensionality




Pattern or structure (Correlations, Clustering, Outliers,
etc.) Discovery in High-Dimensional Parameter Spaces

D >> 3 parameter/feature
( space hypercube

High-D data cloud: mostly
noise, with an arbitrary
PDF distribution

Missing data

Data heterogeneity

But in some corner of some
subset of dimensions of this data
space, there is something # noise,
Mapping the Entropy i.e., a statistically significant
of Large Data Spaces? structure with an unknown form

Djorgovski




From “Morphological Box” to the
Observable Parameter Spaces

Zwicky’s concept: explore all possible combinations
of the relevant parameters in a given problem; these
correspond to the individual cells

ina“ i z v S LS
in a “Morphological Box Y
P 4 4 9 A 4 /
55
' 4%
Pa //
v 4

7

Example: Zwicky’s discovery of the
compact star-forming dwarfs




Systematic Exploration of the Observable

Parameter Spaces (OPS)

Its axes are defined by the
observable quantities

Every observation, surveys
included, carves out a
hypervolume in the OPS

Spectrophotometric
Domain

CS
L
-

e
~——.
-

Surface
Brightness

Angular
Resolution

Morphological
Domain

Astrometric
Domain

uTt
At baselines

exp

Time
Domain

A

Technology opens new domains of the OPS ==l New discoveries




Measurements Physical
Parameter Space Parameter Space

Colors of stars and quasars Fundamental Plane of hot

SRR RO HOE U stellar systems
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A Familiar Example: HR Diagram

Observable

Color-magnitude diagram
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* Not filled uniformly: clustering indicates different families
* Empty regions may be due to selection effects or physics
* Clustering + dimensionality reduction = correlations



Mapping the Data Parameter Spaces

* Obijects of a particular type (e.g., stars, galaxies, SNe,
Quasars, ... ) may occupy only specific regions of a
parameter space, and form clusters

3 GRS RE RN LA RS AR AR AR LR RN LR ]
[ 2.20<z<2.30 ]

2.30<2z<2.40

* If enough known, training 23053260
examples are known, this can -
be used for an automated, '
supervised classification, or the — |
searches for the rare, but of R el
known objects (e.g., quasars) S e 5

N

(g =)
* Unsupervised clustering (let the data tell you what

clusters are present) may reveal previously unknown
types of objects, as outliers from the known clusters



Model-Based Outlier Search and Surprises

Sometimes we know where to look for outliers on the basis of a
prior knowledge, e.g., quasars or brown dwarfs in a color space

2

... but sometimes ,
you find 7 Expected high-z
something T _—quasar region
unexpected:

Peculiar Lo-BALQSO

600

Typical z > 4 Quasar
B UL

- —

I : [ ; I i I
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400 — —
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4000 5000 8
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Classification, Clustering, and Outliers

* Supervised learning (classification): use a known ©C {
set of objects to train a classifier

— Hard to find previously unknown things

* Unsupervised learning (clustering): let the data tell
you how many different kinds of things are there

----/-A' ----- o >

~ AN 4
ANV . >
PPN 4 . v

— Could find previously unknown types as outliers - =

Supervised Algorithms
Neural Networks (MLP)
Boltzmann Machines
RBM
Decision Trees
Nearest Neighbor
Naive Bayes Classifiers
Bayesian Networks
Gaussian Processes
Regression

There is no “one
size fits all”:
different choices
for different
problems

Unsupervised Algorithms
K-Means
Self-Organizing Maps
RDF
Fuzzy Clustering
CURE
ROCK
Vector Quantization
Probabilistic Principal
Surfaces



log 10 of occurences

What is an Outlier?

Original unclustered data Clustered data

It depends on the underlying
probability distribution, and
— T T T T they are seldom Gaussian




Clustering and Searches for Outliers

e Data points
44 o Outlier scores

Sometimes this is easy, not
critically dependent on the .
assumed probability density
distributions of the clusters

But sometimes it isn’t

Having the right cluster
descriptors, number of
clusters, and metric of this
feature space is crucial




Parameter Spaces for the Time Domain

(in addition to everything else: flux, wavelength, etc.)

* For surveys:
o Total exposure per pointing
o Number of exposures per pointing
o How to characterize the cadence?

= \Window function(s)

"= |nevitable biases
* For objects/events ~ light curves:

o Significance of periodicity, periods
o Descriptors of the power spectrum (e.g., power law)
o Amplitudes and their statistical descriptors

... etc. — over 70 parameters defined so far, but which ones
are the minimum / optimal set?



From Light Curves to Feature Vectors

* We compute ~ 70 parameters and statistical measures for
each light curve: amplitudes, moments, periodicity, etc.

* This turns heterogeneous light curves into homogeneous
feature vectors in the parameter space

* Apply a variety of automated classification methods
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Variability Feature Space

* Generate homogeneous representation of time series
by defining a number of descriptive parameters:
—Morphology (shape): skew, kurtosis
—Scale: Median absolute deviation, biweight midvar.
— Variability: Stetson, Abbe, von Neumann
—Timescale: periodicity, coherence, characteristic
—Trends: Thiel-Sen
— Autocorrelation: Durbin-Watson
— Long-term memory: Hurst exponent
—Nonlinearity: Teraesvirta
— Chaos: Lyapunov exponent
— Models: HMM, CAR, Fourier decomposition, wavelets

* Defines a high-dimensional feature space to
characterize the temporal behavior



Feature Selection Algorithms

Most clustering and classification algorithms scale poorly with
the dimensionality of the feature spaces. Feature selection is
one set of dimensionality reduction techniques.

* Filter methods apply a statistical measure to assign a scoring
to each feature, usually independently (univariate). The
features are ranked by the score.

* Wrapper methods look for a set of features where different
feature combinations are evaluated and compared to other
combinations.

* Embedded methods learn which features best contribute to
the accuracy of the model while the model is being created.

* The scoring criterion depends on the goal, e.g.:
— Accurate predictions for the regression searches
— Classification discrimination power for clustering

Djorgovski



Feature Selection Algorithms

Optimal sets of features may be different for
* Different regression target variables:
.8 Y1 = filXi Xjs Xiis )y Yo = foXp s Xqs Xp ), €2C.
* Different classification tasks:
e.g., Class (A,B) = f(x4, Xp, X, ...), Class (A,B,C) = f(X4, Xe, X5, )
* Different regression or classification algorithms:
e.g., ANN, DT, RF, SVM, _
... so they have to be optimized in each individual case

See:

Donalek et al., IEEE BigData 2013, p. 35 = arxiv/1310.1976
D'Isanto et al. 2016, MNRAS, 457, 3119

Djorgovski



Feature Selection Algorithms: Examples

Fast Relief Algorithm (aka ReliefF) ranks features according to
how well their values distinguish between instances.

Fisher Discriminant Ratio (FDR) ranks features according to

their classification discriminatory power. It can be applied only to
binary classification problems.

Correlation-based Feature Selection (CFS) is a wrapper method
which selects features that have low redundancy (i.e., not
correlated with each other) and is strongly predictive of a class.

Fast Correlation Based Filter (FCBF) is a supervised filter
algorithm, similar to the CFS. Searches for features that have
predominant correlation with the class . Can be computationally
efficient with very high dimensional data.

Multi Class Feature Selection (MCFS) is an unsupervised method
based on the spectral analysis of the data. _etc.

Djorgovski



Optimizing Feature Selection

Feature Rank

Rank features in the
order of classification
quality for a given
classification problem,
e.g., RR Lyrae vs. WUMa
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Feature 2

log [OI11] /H

Examples from Astronomy:

"The weirdest SDSS galaxies: results from an outlier detection
algorithm”, D. Baron & D. Poznanski 2017, MNRAS 465, 4530

100 ., | 1 Used Random Forests algorithm to classify
80} g A SDSS galaxies using spectroscopic properties.
Defined a “Weirdness” parameter to quantify
the outliers.

60 |-

40

H¢ strong Blends

20

Velocity structure

20 40 60 80 100 Extremely red &

sodium excess Unusual lines
Feature 1

supernovae

bad spectra Broad [OI1]]

All outliers
found are stars
members of the
known classes
of objects.

Weak Ha

-2 -1 0 1
log [SII]/Ha PT outliers



Examples from Astronomy:

"Unsupervised Clustering of Type Il Supernova Light Curves",
A. Rubin & A. Gal-Yam 2016, ApJ, 828, 111

N = 100 realizations
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To Recap:

* Astronomy is now well into the Petascale data regime,
and data volumes and rates grow exponentially
according to Moore’s Law

— Most data come from the large surveys

— The biggest growth now is in the time domain

— This is true across all wavelengths

— Growth of data complexity and information content

* Derived source catalogs typically contain ~ 109 objects,
with ~ 102 - 103 parameters (features) each

— Data fusion of different surveys increases the data
complexity and discovery potential

— We use Machine Learning to process and analyze the
data, including source classification and selection of
interesting targets for the follow-up studies



