DATA-DRIVEN APPROACHES TO SEARCHES FOR THE TECHNOSIGNATURES OF ADVANCED CIVILIZATIONS KISS, CALTECH, 2019 MAY 20

An introduction to time series analysis

Matthew J. Graham
Center for Data-Driven Discovery/ZTF, Caltech
mjg@caltech.edu

A history of anomalous observations

The first astronomical time series

Thomas Harriott: Dec 1610

lex Priage. Yoliles Galili Humilis. Serus Della Ser. V. invigilon. To assiduano, et & ogni spirito fo potere no solam satisfare alcarico che riene della Cettura di Mattematid nello fire -Dio Di Padoua, Trivere Frauere determinate Di presentare al Jen Pricipe (Ochiale et & persere di gionamento ine finabile & ogne 18390 tis et imprela maritima o terrestre shino Di tenere que to nuow attifizio nel maggior segreto et solame a Diffusitione Di V. Ser: L'Ochiale canato Dalle più ne soite speculazioni Di no spethia ha il vantaggio di juspine Legni et Vele dell'immissi Sue hore et pui di letapo prima o egle jumpra noi et Disinguado I numero et laqualità de i Vallely giudicare le sue forze pallestorsi alta caccia al combattomento o alla Juga, o pure anos nella capagna aperta nedere et partiularme Distingutre agni suo mu to et preparamento. Il is had down maining a Gione 4 stelle * @ ** " inaglis wi Li 1se rugolo

Image credit: University of Michigan Special Collections Library

A wondrous star in the neck of the Whale

EPHEMERIS Novæ Stellæ in collo Ceti,

Ab amo 1638, ad annum 1662.

	ciulia est	: 43	voor i	-15170	niciu h ulcuci cuni du h.uinin
	Observa-	Añus	Monf. dies	Hora,	OBSERVATIONES.
Magnitudo	Phocylides:		Decembr. 1.	diritie.	Stellam hanc in Ceto primum deprebendit.
BOYZ Stellz.	- d ∷dm	ात्र	December. 25.	o Veft.	Magnituda erat tam nudis eculis, quam per Te- lescopium, qua Stellas tertis fulgoris excede-
	ierit 🚟	P 011	หระชาร์: Li	siden	ret, quales in ore, & genal Cete, se & Nordela
	nten	pt 4	no mn	٠,১٥٥	Piscium sunt: verum sensibiliter quoque mi- nor erat Stellis setunde magnitudinis, Man.
	iartæ : · ·	io as	thribe de	siase'	dibula nimitum atque Luoida in Capite A- rietis. Interim decrescebat paullatim, usque
	ro ; itol	.) /['	ruog 🗆	11. TO (1)	dum in occussus suo heliaca agnareiur Siellis quarii circiier honoris.
Prorsus deli- tuit.	Phocylides .	1639	Media estate.	, C2.	Postquam Ceti sidus Heliace orium alias fuis-
	Fullenius		oarp ii	.∵ori r	fet, Caludiligentissimò intentis oculis lustra- vimus, vidimus os, genam, Mandib. Ceti, ali-
	ના છાત્રો સામે) (1. 7.1 117	der :	William P	as q'; vicinas circumcirca Stellas, nullum taine nova Stella tunc vestigium observari poinit.
	Phocylides'	1639	Decemb. 7.	1	Denno apparuit codem pracise loco, codem fita
Denuò affulfit	Fullenius	1641	Septemb. 23.	1951 <u>2</u> 0	quo ante. Citius in conspectum non prodiit.
	e e nist		Septemb. 23.	ratery).	Denud affulfit!
	Jungius	_	August. circ. Februar. 18.		Nondum apparuit.
	7 mg.m.	9	· 20.	1.000	Observata est adoccasum nique beliacum. Ini- tio magnitudo ejus existe terist magnitudinis.
Nufquam ap-		-	A fulio ad 3	Nov.mg;	Solicitè quidem quasita, sed nusquam fulsit.
parebat.	Hevelins	1648	Januar. 3.	9 Vefp.	Major quidem Nodo Lini, & illa in ore Cett tertii honorii; minor tanien Luc. Mandib
	o – tada	1659	A Fulio,	Sept in die	2 Magitud. extitit.
,		1659	Decemb. 14.	9 Vefp.	Major illa ud genam Ceti 4 magu. 3 minor ca-
;	ાં ⊹ે કહે	ja:	imadi	in a	menillà in ore Ceti 3 magn. Colore verò triffi & subobscuro visa est. Ab boc autem tempo- re sensim decrevit, ad occasum usque beliacii.
Quantæ ma-	Hevelins		A Julii initio	ad fine Sept.	
gnitudinis ex- titerit an. 1660	d 1997	1660	Septemb. 1.2. Septemb. 10.	1.3110	Inftar fexta & 7 magn. Stellula illuxit. Satis clare affulgebat, inftar Stella 4 magn. fe-
	7 : 7] 3	- "	fa ilan	on Inc	rè, vieninor en ad gename Color erat alis
			1.7.7	10.00	quanto rubicundus, & obsufus; Luce & cla- ricate multo inferior Mundibula deprehm-
,			Sept. 18 & 20.	. c.	Sa est. Equalis illi in ore Ceti; crescebat itaque.
	Heveline	1660	Sept. 27 : 29 30. Octobr. I.	Veft.	Major illà in ore Ceti. Major quidem in ore ; minor tamen Mandibala.
Paullatim cre-			OHob. 4.	Vefp. ()	Equalis fore Mandibula.
fcebat.			Ottob. 18. 20.	Vefp.	Major Mandibulâ, imò Lucidâ Y; minor verò aliquamò illà in Candà Ceti Anstral: Prato-
	S ::		7.197	o mil	rea, ut colore albicantiore, fic estate multo wi- vidiori, & magis vibranti lumine pradiça
	'	1	1 11111	mair.	erat.

"If the new star were outside the ordinary course of nature, it would tell us little about the constitution of the universe."

Image credit: AAVSO

A billion time series and counting

- Palomar-Quest Synoptic Sky Survey
- SDSS (Stripe 82)
- · Catalina Real-time Transient Survey
- Palomar Transient Factory
- Zwicky Transient Factory
- Pan-STARRs
- SkyMapper
- ASKAP
- ThunderKat (MeerKAT)
- KEPLER
- GAIA
- LIGO

- GoTo
- IceCUBELOFAR
- MeerKAT

• LSST

ASKAPWISE

• SKA

• OGLE

TESS

- DESI
- ASAS-SN
- DLJI
- MASTER
- SDSS-V

DES

- LAMOST
- ATLAS
- BlackGEM

What we do ask of time series?

Population behaviors

• Characterize, categorize, classify

Outliers

- Extreme sources
- Physical models
 - Predictions

(Cody & Hillenbrand 2018)

Types of astronomical variability

Foundational concepts - I

A time series is a set of time-tagged measurements: $\{X_i(t_i)\}$ with observation errors σ_i

Non-IID

Data is sequential

Homoskedasticity

· All errors drawn from same process

Stationarity

- The generating distribution is time independent
- GSR 1915+215 has ~20 variability states
- GARCH models: variance is a stochastic function of time
- Nonstationary time series do not have to be stationary in any limit

Ergodicity

 The time average for one sequence is the same as the ensemble average:

$$\hat{f}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^k x\right).$$

(Belloni et al. 2000)

Foundational concepts - II

Sampling

- Even or regular sampling: $y(t) = x(t_0 + n\Delta t)$ where n = 0,1,...,m
- Uneven or irregular sampling: $y(t) = x(t_0), ..., x(t_m)$

Power spectrum

- Power spectral density tells you everything: $PSD(v) = |\mathcal{F}(x)|^2$
- PSD is Fourier transform of autocorrelation function:

$$PSD(v) = \int_{-\infty}^{\infty} ACF(\Delta t) e^{-2\pi i v \Delta t} \Delta t$$
$$ACF(\Delta t) = \mathbb{E}[(x_t - \mu)(x_{t+\Delta t} - \mu)]/\sigma^2$$

• The structure function is related to the autocorrelation function:

$$SF(\Delta t) = \sqrt{2}\sigma_S\sqrt{1 - ACF(\Delta t)}$$

 $SF(\Delta t) = 0.742 IQR(x)$

Time series decomposition

Given any stationary process, Y, there exist:

- a linearly deterministic process, D
- an uncorrelated zero mean noise process, R
- a moving average filter, C

such that:

$$Y(t) = C \times R(t) + D(t)$$

(Wold's Decomposition Theorem (1938))

Different physical processes contribute to deterministic dominance D(t) or stochastic dominance $C \times R(t)$.

Deterministic chaos vs. stochastic?

Characterization – extracting data features

Amplitude

Amplitude

Common statistical features

• Timescales:

• Lomb-Scargle

• Variability:

- von Neumann variability (phase-folded)
- Stetson K index

• Morphology:

- Skewness
- Kurtosis
- IQR
- Cumulative sum index (phase-folded)
- Ratio of magnitudes brighter/fainter than mean

• Trends:

Slope percentiles (phase-folded)

Model:

- Fourier amplitude ratios
- Fourier phase differences
- Fourier amplitude
- Shapiro-Wilk normality test

Categorization

(Cody & Hillenbrand 2018)

Characteristic timescales

(Sartori et al. 2018)

Data-derived classes

Class	Description			
CBF	Close binary, full period			
CBH	Close binary, half period			
DBF	Distant binary, full period			
DBH	Distant binary, half period			
dubious	Star might not be a real variable			
IRR	Irregular: catch-all for difficult short-period cases			
$_{ m LPV}$	Long period variable: catch-all for difficult cases			
MIRA	High-amplitude, long-period red variable			
MPULSE	Modulated Pulse: likely multi-modal pulsator			
MSINE	Modulated Sine: multiple cycles of sine-wave were fit			
NSINE	Noisy Sine: pure sine was fit, but residuals are large or non-random			
PULSE	Pulsating variable			
SHAV	Slow High-Amplitude Variable, too blue or irregular for Mira			
SINE	Pure sine was fit with small residuals			
STOCH	Stochastic: certainly variable, yet more incoherent even than IRR			

ATLAS PULSE variables

(Heinze et al. 2018)

Not all features are equal

Richards et al. 2011

| First | Permits | Fort | Permits |

Dubath et al. 2012

Elorietta et al. 2016

Periodicity

$$x(t+P) = x(t); f = 1/P$$

$$x(t,f) = A_f \sin 2\pi f \left(t - \varphi_f\right)$$

$$\chi^2(f) = \sum_n \left(\frac{x_n - x(t_n; f)}{\sigma_n}\right)^2$$

$$P(f) = \frac{1}{2} \left[\hat{\chi}_0^2 - \hat{\chi}^2(f)\right]$$

$$\varphi(t,f) = tf - int(tf)$$

$$\theta(f) = g(\varphi_n, x_n; f)$$

$$P(f) = h(\theta(f))$$

Period finding is not a single algorithm

- Minimized (least-squares) fit to a set of basis functions:
 - Lomb-Scargle and its variants
 - Wavelets
- Minimize dispersion measure in phase space:
 - Means (PDM)
 - Variance (AOV)
 - String length
 - Entropy
- Rank ordering (in phase space)
- Bayesian
- Neural networks
- Gaussian process regression
- Convolved algorithms

The most important feature: period

- Many features used to characterize light curves rely on a derived period:
 - Dubath et al. (2011) show a 22% misclassification error rate for non-eclipsing variable stars with an incorrect period
 - Richards et al. (2011) estimate that periodic feature routines account for 75% of computing time used in feature extraction
 - Deep learning still applied to folded light curves
- Domain knowledge constraints
 - RR Lyrae: Blazho behavior (30%), small amplitude cycle-to-cycle modulations (RRabs)
 - Close binaries, LPVs: cyclic period changes over multidecade baselines
 - Semi-regular variables: double periods, multiperiodicity
 - ARMA models: quasi-periodicity
- Trustworthiness of quoted periods

Investigating period finding accuracies

Data set:

- 15522 CRTS light curves for all objects in SIMBAD and VSX with a quoted period
- 50124 ACVS light curves for MACC classification
- 1500 MACHO light curves for RR Lyrae, EBs and Cepheids

- Eruptive (4194): T Tauri, red supergiants, RS Can Ven
- Pulsating (45599): semiregulars, RR Lyrae, Mira, δ Scuti, Cepheids
- Rotating (455): chemically peculiar, BY Dra
- Cataclysmic (386): S U Ma, U Gem, novalike
- Eclipsing (14952): eclipsing binaries, AM Her
- Other (1369)
- 9 different algorithms

0.06 E 0.05

(Graham et al. 2013)

What can we say about period finding

- No algorithm is generally better than ~60% accurate
- All methods are dependent on the quality of the light curve and show a
 decline in period recovery with lower quality light curves as a
 consequence of:
 - fewer observations
 - fainter magnitudes
 - noisier data and an increase in period recovery with higher object variability;
- All algorithms are stable with a minimum bin occupancy of ~ 10 ($\Delta \phi = 0.1$)
- A bimodal observing strategy consisting of pairs (or more) of short Δt observations per night and normal repeat visits is better
- The algorithms work best with pulsating and eclipsing variable classes
- LS/GLS are strongly effected by half-period issue (eclipsing binaries)
- Specific algorithms work better with irregular sampling, bright magnitudes (containing saturated values), or with performance constraints

Autoregressive models

- Purely random: $x_t = z_t$ where $\{z_t\}$ are iid
- Random walk (Brownian motion): $x_t = x_{t-1} + z_t$
- Autoregressive: $x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \cdots + z_t$
- Moving average: $x_t = z_t + \beta_1 z_{t-1} + \cdots + \beta_{t-q} z_{t-q}$
- ARMA(p,q): $x_t = \alpha_1 x_{t-1} + \dots + \alpha_{t-p} x_{t-p} + z_t + \beta_1 z_{t-1} + \dots + \beta_q z_{t-q}$
- ARIMA(p, d, q), ARFIMA(p,d, q):
- $\bullet (1-B)^d x_t = z_t$

Quasar variability as a damped random walk

$$\begin{split} dX(t) &= -\frac{1}{\tau} X(t) dt + \sigma \sqrt{dt} \varepsilon(t) + b dt \quad \tau, \sigma, t > 0 \\ X_{i+1} &= X_i e^{-\Delta t/\tau} + G \left[\sigma^2 \left(1 - e^{-2\Delta t/\tau} \right) \right] + b \end{split}$$

- Characterized by variability amplitude and timescale
- Basis for stochastic models of variability
- Deviations noted (e.g., Mushotzky 2011, Zu et al. 2013, Graham et al. 2014)
- Degenerate model can be best fit for a non-DRW process (Kozlowski 2016)

More autoregressive – CARMA(2,1)

$$d^{2}x + \alpha_{1}d^{1}x + \alpha_{2}x = \beta_{0}z_{t} + \beta_{1}z_{t-1}$$

(Moreno et al. 2019)

Periodic quasars?

Generative vs. discriminative

- Current statistical models of variability are designed to discriminate between classes, e.g. stars/galaxies – p(y|x)
- Better to learn time series (shape) rather than determining some parameterizable form -p(y, x)
- Generative approach that supports predictions

Forecasting

- Predicting periodic behavior is trivial
- Predict aperiodic (chaos or stochastic) behavior:
 - Stock market
 - Climate change

- Epileptic seizures
- Earthquakes
- Gaussian process regression
- Localized chaos measure

(Golestani & Gras 2014)

Deep modelling of time series

LSTM Autoencoder:

(Naul et al. 2018)

Deep time series features

(Tachibana et al. 2019)

RNNs with QSOs

Summary

- Traditional time series analyses in astronomy involve:
 - (simple) discriminative features as (possible) inputs to machine learning algorithms
 - outlier detections based on Gaussian tails
 - little predictive power
- Data volumes now mean that we can *model individual* sources:
 - capturing full time series behavior
 - better identifying extrema
 - with generative approaches
- Next generation surveys enable real-time validation of predicted behaviors and swift identification of deviance
- Let's go hunting for technosignatures

