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A history of anomalous observations
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•Who?
Babylonian Astronomical Diary

•What?
The comet which previously had 
appeared in the east in the path of Anu in 
the area of Pleiades and Taurus

•Where?
to the west […] and passed along in the 
path of Ea in the region of Sagittarius, 1 
cubit in front of Jupiter, 3 cubits high 
toward the north […] 

•When?
Month VIII, SE 148 (lunar month beg. 21 
October 164 BC)

• How?
By eye

•Why?
Celestial divination



The first astronomical time series
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Image credit: University of Michigan 
Special Collections Library

Thomas Harriott: Dec 1610



A wondrous star in the neck of the Whale 
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Image credit: AAVSO

“If the new star were outside the 
ordinary course of nature, it would tell us 
little about the constitution of the 
universe. “



A billion time series and counting 
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• Palomar-Quest Synoptic Sky Survey
• SDSS (Stripe 82)
• Catalina Real-time Transient Survey
• Palomar Transient Factory
• Zwicky Transient Factory
• Pan-STARRs
• SkyMapper
• ASKAP
• ThunderKat (MeerKAT)
• KEPLER
• GAIA
• LIGO

• IceCUBE
• LOFAR
• LSST
• SKA
• TESS
• ASAS-SN
• MASTER
• DES
• ATLAS
• BlackGEM

• GoTo

• MeerKAT

• ASKAP

• WISE

• OGLE

• DESI

• SDSS-V

• LAMOST

…



What we do ask of time series?
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Population behaviors
• Characterize, categorize, classify

Outliers
• Extreme sources

• Physical models
• Predictions

(Cody & Hillenbrand 2018)



Types of astronomical variability
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Foundational concepts - I
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A time series is a set of time-tagged measurements: {𝑿# 𝑡# } with 
observation errors 𝝈#
Non-IID
• Data is sequential

Stationarity
• The generating distribution is time independent
• GSR 1915+215 has ~20 variability states 
• GARCH models: variance is a stochastic

function of time
• Nonstationary time series do not have to

be stationary in any limit

• Ergodicity
• The time average for one sequence is the

same as the ensemble average:

(Belloni et al. 2000)

Homoskedasticity
· All errors drawn from same process 



Foundational concepts - II
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Sampling
• Even or regular sampling: 𝑦 𝑡 = 𝑥(𝑡+ + 𝑛∆𝑡) where 𝑛 = 0,1, … ,𝑚
• Uneven or irregular sampling: 𝑦 𝑡 = 𝑥 𝑡+ , … , 𝑥(𝑡5)

Power spectrum
• Power spectral density tells you everything: 𝑃𝑆𝐷 𝜐 = ℱ(𝑥) ;
• PSD is Fourier transform of autocorrelation function:

𝑃𝑆𝐷 𝜈 = =
>?

?
𝐴𝐶𝐹 Δ𝑡 𝑒>;E#FGH∆𝑡

𝐴𝐶𝐹 ∆𝑡 = 𝔼 𝑥H − 𝜇 𝑥HL∆H − 𝜇 /𝜎;

• The structure function is related to the autocorrelation function:

𝑆𝐹 ∆𝑡 = 2𝜎P 1 − 𝐴𝐶𝐹 ∆𝑡
𝑆𝐹 ∆𝑡 = 0.742 𝐼𝑄𝑅(𝑥)



Time series decomposition
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Given any stationary process, Y, there exist:
• a linearly deterministic process, D
• an uncorrelated zero mean noise process, R
• a moving average filter, C
such that:

Different physical processes contribute to 
deterministic dominance D(t) or stochastic
dominance C x R(t).
Deterministic chaos vs. stochastic?

Y (t) =C ×R(t)+D(t)
(Wold’s Decomposition Theorem (1938))



Characterization – extracting data features
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Common statistical features
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• Timescales:
• Lomb-Scargle

• Variability:
• von Neumann variability (phase-folded)
• Stetson K index

• Morphology:
• Skewness
• Kurtosis
• IQR
• Cumulative sum index (phase-folded) 
• Ratio of magnitudes brighter/fainter than mean

• Trends: 
• Slope percentiles (phase-folded)

• Model:
• Fourier amplitude ratios
• Fourier phase differences
• Fourier amplitude
• Shapiro-Wilk normality test



Categorization
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(Cody & Hillenbrand 2018)



Characteristic timescales
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(Sartori et al. 2018)



Data-derived classes
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(Heinze et al. 2018)



Not all features are equal
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Richards et al. 2011
Elorietta et al. 2016

D’Isanto et al. 2016

Dubath et al. 2012

Richards et al. 2012



Periodicity
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𝑥 𝑡 + 𝑃 = 𝑥 𝑡 ; 𝑓 = 1/𝑃

𝑥 𝑡, 𝑓 = 𝐴Y sin 2𝜋𝑓 𝑡 − 𝜑Y

𝜒; 𝑓 =`
a

𝑥a − 𝑥 𝑡a; 𝑓
𝜎a

;

𝑃 𝑓 =
1
2
𝜒̂+; − 𝜒̂;(𝑓)

𝜑 𝑡, 𝑓 = 𝑡𝑓 − int 𝑡𝑓

𝜃 𝑓 = 𝑔(𝜑a, 𝑥a; 𝑓)

𝑃 𝑓 = ℎ(𝜃 𝑓)



Period finding is not a single algorithm
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l Minimized (least-squares) fit to a set of basis functions:
l Lomb-Scargle and its variants
l Wavelets

l Minimize dispersion measure in phase space:
l Means (PDM)
l Variance (AOV)
l String length
l Entropy

l Rank ordering (in phase space)
l Bayesian
l Neural networks
l Gaussian process regression
l Convolved algorithms



The most important feature: period

20 May 2019 Matthew J. Graham 19

• Many features used to characterize light curves rely on a derived period:
• Dubath et al. (2011) show a 22% misclassification error rate for non-eclipsing 

variable stars with an incorrect period
• Richards et al. (2011) estimate that periodic feature routines account for 75% of 

computing time used in feature extraction
• Deep learning still applied to folded light curves

• Domain knowledge constraints
• RR Lyrae: Blazho behavior (30%), small amplitude cycle-to-cycle modulations 

(RRabs)
• Close binaries, LPVs: cyclic period changes over

multidecade baselines
• Semi-regular variables: double periods, 

multiperiodicity
• ARMA models: quasi-periodicity

• Trustworthiness of quoted periods
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Investigating period finding accuracies
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l Data set:
l 15522 CRTS light curves for all objects in SIMBAD 

and VSX with a quoted period 
l 50124 ACVS light curves for MACC classification 
l 1500 MACHO light curves for RR Lyrae, EBs and 

Cepheids

l Classes:
l Eruptive (4194): T Tauri, red supergiants, RS Can Ven
l Pulsating (45599): semiregulars, RR Lyrae, Mira, δ Scuti, Cepheids
l Rotating (455): chemically peculiar, BY Dra
l Cataclysmic (386): S U Ma, U Gem, novalike
l Eclipsing (14952): eclipsing binaries, AM Her
l Other (1369)

l 9 different algorithms (Graham et al. 2013)



What can we say about period finding

20 May 2019 Matthew J. Graham 21

l No algorithm is generally better than ~60% accurate
l All methods are dependent on the quality of the light curve and show a 

decline in period recovery with lower quality light curves as a 
consequence of:

l fewer observations
l fainter magnitudes
l noisier data and an increase in period recovery with higher object variability;

l All algorithms are stable with a minimum bin occupancy of ~10 (Δϕ = 0.1)
l A bimodal observing strategy consisting of pairs (or more) of short Δt

observations per night and normal repeat visits is better
l The algorithms work best with pulsating and eclipsing variable classes
l LS/GLS are strongly effected by half-period issue (eclipsing binaries)
l Specific algorithms work better with irregular sampling, bright 

magnitudes (containing saturated values), or with performance 
constraints



Autoregressive models
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• Purely random: 𝑥H = 𝑧H where {𝑧H} are iid
• Random walk (Brownian motion): 𝑥H = 𝑥H>h + 𝑧H
• Autoregressive: 𝑥H = 𝛼h𝑥H>h + 𝛼;𝑥H>; + ⋯+ 𝑧H
• Moving average: 𝑥H = 𝑧H + 𝛽h𝑧H>h + ⋯+ 𝛽H>l𝑧H>l
• ARMA(p,q): 𝑥H = 𝛼h𝑥H>h + ⋯+ 𝛼H>m𝑥H>m + 𝑧H + 𝛽h𝑧H>h + ⋯+ 𝛽l𝑧H>l
• ARIMA(p, d, q), ARFIMA(p,d, q): 
• (1 − 𝐵)o𝑥H = 𝑧H



Quasar variability as a damped random walk
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l Characterized by variability amplitude and timescale
l Basis for stochastic models of variability
l Deviations noted (e.g., Mushotzky 2011, 

Zu et al. 2013, Graham et al. 2014)
l Degenerate model – can be best fit for a 

non-DRW process (Kozlowski 2016)

dX(t) = − 1
τ
X(t)dt +σ dtε(t)+ bdt    τ ,σ ,t > 0
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More autoregressive – CARMA(2,1)
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𝑑;𝑥 + 𝛼h𝑑h𝑥 + 𝛼;𝑥 = 𝛽+𝑧H + 𝛽h𝑧H>h

(Moreno et al. 2019)



Periodic quasars?
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Generative vs. discriminative
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• Current statistical models of variability are designed to 
discriminate between classes, e.g. stars/galaxies – p(y|x)
• Better to learn time series (shape) rather than determining 

some parameterizable form – p(y, x)
• Generative approach that supports predictions



Forecasting
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• Predicting periodic behavior is trivial
• Predict aperiodic (chaos or stochastic) behavior:

• Stock market
• Climate change

• Gaussian process regression
• Localized chaos measure

• Epileptic seizures
• Earthquakes

(Golestani & Gras 2014)



Deep modelling of time series
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• LSTM Autoencoder:

(Naul et al. 2018)



Deep time series features
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(Tachibana et al. 2019)



RNNs with QSOs
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Summary
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• Traditional time series analyses in astronomy involve:
• (simple) discriminative features as (possible) inputs to machine learning 

algorithms
• outlier detections based on Gaussian tails 
• little predictive power

• Data volumes now mean that we can model individual sources:
• capturing full time series behavior
• better identifying extrema
• with generative approaches 

• Next generation surveys enable real-time 
validation of predicted behaviors and swift 
identification of deviance
• Let’s go hunting for technosignatures


