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The principle behind electromagnetic induction

Eddy currents

In response to a time-variable primary The time-variable primary and All time-variable and stationary

field, flow on the surface induced fields summed together. (southward) fields summed together.
of Europa’s ocean creating a dipolar The varying field circumvents We model this field.

induced field that shields Europa’s Europa’s interior.

interior from the primary field.
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Amplitude spectrum of the geomagnetic field

10°

| Grand Spectrum
103 | Reversaly

> grypmchmns?
10! }

—
Q
|
—
I
~a

9
w
I 1
/’
»
y
g
]
:
&
-]
bt
£

Amplitude, TWHz

1 0_5 i 11 year sunspot cycle 'i
R Annusal and semi-annyal
-7 L Storm activi
10 Quiet days ) b4
1 0—9 »

o
L
o
T— T 17
on years
1 thousand yeary
é
i
‘]l
%

é E . g 2 Lu §
10715 -E 28 83§ & E
I TR R T WY ST YR W W Wil S i W A S N N
1015 10~ 11 107 10-3 107 105
Frequency, Hz

Constable and Constable, 2004



Induction studies of the Earth from satellite data
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Lunar interior structure from electromagnetic induction
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Electromagnetic induction from Mercury’s core
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For Jovian satellites Jupiter provides the primary field

The Galilean satellites are
located in the inner and
middle magnetosphere of
Jupiter.

Because the dipole and
rotation axes of Jupiter are
not aligned, the moons
experience a varying field in
their frame.
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Induction from a finite-conductivity shell

* Because the primary field is uniform and the conductivity distribution has
spherical symmetry, the induced field outside the conductor is a dipole field

B =f—;[3(r-M)r—r2M]/r5 (1)

sec

whose moment M oscillates at the same frequency w and along the same
direction e, as the primary field. The moment can therefore be written:

M=% 4008 /2,

so that Eq. 1 becomes: Ho e

* The parameters A and ¢ are real numbers, which after Parkinson [1983] are
given by the complex equations:

B, = —Ae"'(“”_“ﬁ)Bprim [3(1' ‘e, )r—r’e, kfl/(2r5 )

Ao = [’_ojj RJs, (rok) — 52 (k)
RJlfz(rnk) _J—l/z("ok)
. rlk]_m (r,k)
3']3/2(7‘1[() _7‘115']1/2 (’]k)

7

m

where *=0-DJu00/2 has the dimension of a (complex) wave vector, J,, is the
Bessel function of first kind and order m.



Electromagnetic induction from Europa
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Conductivity (S m-1)

Europa’s ice thickness and conductivity
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Jovian Field Spectrum at Europa:
Multi-frequency Sounding

e |n Europa’s rest frame, the external field from Jupiter has many discrete frequencies that can
be exploited for multi-frequency induction sounding.
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Response of a Europa ocean ¢ =2.75 S/m
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The induction response (efficiency) is
stronger for shorter-period waves.
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Response at synodic period (11.2 hr) provides
estimate of ice thickness
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The strength of the
secondary field at synodic
period falls by 0.5 nT for
each km of ice. Thus to
determine the ice
thickness with a precision
of 4 km would require
determining this
response with a precision
of 2 nT.
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Ocean thickness (km)
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Finding the Ocean Conductivity and
thickness
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Ocean Conductivity (S/m)

Contours of induced field (in nT)
observed at the surface in response
to the 11.2-hr (blue, solid lines) and
85.2—-hr waves (red, dashed lines)
show that responses at these
frequencies can uniquely determine
ocean parameters in the regime
where the contours intersect (large
thickness and high conductivity).
We would like to determine the
orbital period (85.2 hr) response
with a precision of ~2 nT.
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Galileo Observations at Callisto

Corrected Perturbations at Callisto (CphiO)
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Callisto modelling

(a)

C3 Magnetic Field, 4 November 1996
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Ganymede’s magnetosphere

Figure Courtesy: Fran Bagenal, Xianzhe Jia
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The inductive response for Ganymede

M,, = 49 nT

100

80

Measured My

60

40+

20

0+

A0k

B0

-80

Induced moment in a
perfectly conducting

00

82% response

%

_‘I 00% response

-100

-80

-60

-40

»

sphere

»

-20

0
Modeled My

20

40

60

80

100

Kivelson et al. Icarus, 2002




Induction from Ganymede is not unambiguous

TABLE VI
RMS Errors and Condition Numbers

Fitted parameters

Summed Number
See  Internal Internal External  Inductive =~ Summed  weighted” Condition of fit
Table  dipole  quadrupole fields response  rms of fit“ rms of fit number parameters
IV v v 15.1 16.5 12.3 12
\% v v v 11.5 13.2 12.5 13
I v v v 13.5 12.6 32.6 17
v v v v 13.5 12.6 51.4 18

@ Units of rms and rmsw are nT.
P Data are weighted inversely to the maximum field strength.

Kivelson et al. 2002
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Summary of induction from icy Galilean satellites

“Near” surface conductors are required to fit Europa,
Ganymede & Callisto measurements.

Europa and Callisto induction signatures are global and
dipolar suggesting the source is a near surface global
conducting shell.

Source of field cannot be far below the surface because the
field strength falls like (r/R;,,;)* and signature would become
too weak to detect.

We know that Europa’s H,O layer is ~ 150 km thick,
Ganymede and Callisto’s > 400 km.

Global sub-surface oceans of at least a few km thicknesses
and located at a depth of a few to tens of km for Europa and ~
150 km for Ganymede and Callisto are required to explain the
observed signatures.
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lo

How can electromagnetic induction studies help at l0?
Electrical conductivity is a strong function of temperature and melt fraction.
Magnetic field observed near lo can be inverted to obtain the conductivity of

lo’s interior,
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Rock conductivities: A primer

 The main mechanism of conductivity in solid rocks is
temperature-induced semi-conduction involving mobility of
mainly conduction band electrons but also ionic mobility
aided by point defects.

* For forsterite, electron mobility and more importantly ionic
conduction by magnesium vacancies are the main sources of
conductivity and near a temperature of 1200 °C its
conductivity rises to ~2x104S/m.

 For aniron-bearing olivine, an additional source of
conductivity arises, namely small polaron hopping
(polarization from lattice deformation) of holes from Fe3* to
Fe?* on the Mg sublattice which increases the conductivity of
the olivine to 103S/m at 1200 °C. Thus, the conductivity of
an iron-bearing mineral increases with increasing oxygen

fugacity (Fe3* abundance ). .



Rock conductivity increases strongly with temperature:
Using magnetometers as thermometers

Conductivity of solid rocks follows an Arrhenius relation (Nover, 2005,
Surveys in Geophysics)

RT

where, E_ is the activation energy (in Joules) and AV is the activation volume
(in cm3 /mol) .
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Molten rocks have very “high” conductivity

4714 J. Maumus, N. Bagdassarov, and H. Schmeling

Table 9. Melt conductivity needed to model the measured molten rock conductivity with Hashin-Strikman vpper bound (Eqn. 8).

Sample T yuenching (°C) log (o,,;) (S/m) 0, (S/m) X, ... (VvOL%) log (oyst) (S/m) log (o) (S/m)

Oman gabbro

1 GPa 1240 —2.08 1.5 34 —0.41 0.4

0.5 GPa 1188 -2.24 0.29 15 -1.44 -1.45

0.5 GPa 1187 -2.25 0.31 12 -1.51 -1.5

0.3 GPa 1196 -2.22 0.48 17 —-1.20 -1.2
Karelia olivinite, 1 GPa 1315 -1.92 28.8 10 0.30 0.3
Spitzbergen lherzolite

2 GPa 1465 —1.86 4.9 22 —0.10 0.1

1 GPa 1360 -2.25 2.5 14 —0.60 —0.6
Ronda lherzolite, 1 GPa 1377 -2.25 2.0 11 —0.80 —0.8
Ol + basalt sample, 1 GPa 1183 -3.06 29 4.5 —-1.05 -1.05

Maumus et al. 2005
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Conductivity of a partial melt depends on many factors

— Conductivities of solid and melt phases of the rocks.

— Dihedral wetting angle, the contact angle between the
melt and the adjoining crystal grains . Even for very small
melt portions, interconnected melt is observed at grain
edges and grain boundaries in thin sections of quenched
samples if dihedral angle < 60°.

S 7%,
— ¢ L
TSN

Scanning electron micrograph of
Spitzbergen, Iherzolite

— The interconnectivity of the melts on a macro scale. N



& Conductivity of a partial melt: interconnectivity on macro
scale
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Conductivity of a magnetite partial melt

Schilling et al. 1997,
Physics of Earth and
Planet. Interiors

Where x is volume melt fraction, f = 1-x, o, is conductivity of the melt

and o is the conductivity of the solid rock
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Conductivity of rock as a function of melt fraction in it. The red curve is for melt conductivity of 5 S/m, green for 3 S/m and blue for 1 S/m. The most likely melt conductivities for Io would range between 2-3 S/m. The curves are based on work of Schilling, F.R., Partzsch, G.M., Brasse, H., Schwarz, G., 1997 which appeared in Phys. Earth Planet. Inter. 103, 17–31. The Schilling et al. work uses a modified brick layer model to obtain conductivities of melts mixed with solid rocks.


Composition of 10’s interior

lo’s bulk composition is believed to be
broadly chondritic (L or LL) and as lo has
fully differentiated, most of the iron has
segregated into its core making its mantle
ultramafic but low in Fe.

After removing a 30-50 km crust rich in
silicates and an Fe core of 1000 km radius,
the three main constituents of the mantle
are Si0,, MgO and FeO with weight% of

44.1, 32.2 and 14.1 (Keszthelyi et al. 2007).

A good Earth-analogue for this type of
rock is a Iherzolite derived from
Spitzbergen, Norway:

Lherzolites are ultramafic igneous rocks
rich in olivine and pyroxenes and are
believed to be derived from the Earth’s
upper mantle (Blatt, H. and Tracy R. J,,
1996).

Lherzolite from Eifel, France
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Jupiter provides the primary field

e Jloislocated in the inner
. Jovian Background Field at lo
magnetosphere of Jupiter. — T —

600 - 24 -
* Because the dipole and 400 - &~ 27 i
rotation axes of Jupiter are 200 I I

not aligned, lo experience i ]

a varying field in its frame 20
ataperiod of 12.953 hrs. [ 09 _
-400 i
 We will focus on 124, 127 i -
131 and 132 flybys for 600 9 ]
which inducing fields were  _gggL S __
large and changed in -800 -600 -400 200 0 200 400 600 800

polarity. =X
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mantle ( m)

h

Induction from core alone
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Induction from core + mantle
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Sources of magnetic field near lo -

e Jupiter + its current sheet /

— Obtained from Khurana (1997) el
magnetospheric model. -

 Plasma interaction currents v

— Calculated from 3-D MHD simulations

* Electromagnetic induction from a
subsurface conductor.

— Obtained from 3 layer spherical shell models.

e Permanent internal field

— Obtained from modeling of residual field
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Data MHD model

124 magnetic field observed and modeled
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Induction from solid mantle

We will first consider two
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124 Data, MHD, solid mantle models

124 magnetic field observed and modeled
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We shall next consider models of a magma ocean
(asthenosphere) overlying the solid mantle (and core

Normalized A and ¢ forc =0.01 S/m
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Conductivity of a partial melt of lherzolite

1
10

C Meit = 9 S

—_
o

S et = 3 S/M- Using the formalism of
Gy = 1 S/m) Schilling et al. 1997,

‘s Physics of Earth and
Planet. Interiors

Conductivity (S/m)

—
Ol

| 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Melt Fraction

(oS- 1) = f)
o () + o (P -f-1)

a

Where x is volume melt fraction, f = 1-x, o, is conductivity of the melt
and o is the conductivity of the solid rock 37
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Conductivity of rock as a function of melt fraction in it. The red curve is for melt conductivity of 5 S/m, green for 3 S/m and blue for 1 S/m. The most likely melt conductivities for Io would range between 2-3 S/m. The curves are based on work of Schilling, F.R., Partzsch, G.M., Brasse, H., Schwarz, G., 1997 which appeared in Phys. Earth Planet. Inter. 103, 17–31. The Schilling et al. work uses a modified brick layer model to obtain conductivities of melts mixed with solid rocks.


124 Data, MIHD, solid mantle, Magma ocean
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Melt fraction for three magma ocean models is 5%, 20% and 100%

Thickness = 50 km. 38
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Presenter
Presentation Notes
Mx (model, assuming 100% efficiency) vs Mx (observed). Similarly My(model, assuming 100% efficiency) vs My (observed). The solid line assumes 100% efficiency for “observation”.
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Expected and recovered internal and external harmonics
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lo Conclusions

 The Galileo magnetic field data from 124, 127, 131 and 132
passes are consistent with models that require large melt
fractions (~ 20%) of rocks in the asthenosphere of lo
suggesting that a contemporaneous global magma ocean
exists in lo. The thickness of the melt layer is at least 50 km.

 The permanent dipole and quadrupole terms from the
internal dynamo field are small (< 110 nT, polar surface field).
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Response A (%)

Future work (Multi-frequency induction)
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Future work: Determining magma ocean thickness
RED lo’s response (polar, nT) at synodic rotation period
Blue: 10’s response at orbital period of lo
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mantle thickness (km)

hmantle (km)

Induction from core + mantle

Normalized A and ¢ for S, =1000 S/m
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hmantle (km )

Induction from core + mantle
Extended range plot
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Expectations for induction field from lo:
Lava conductivities

4714 J. Maumus, N. Bagdassarov, and H. Schmeling

Table 9. Melt conductivity needed to model the measured molten rock conductivity with Hashin-Strikman vpper bound (Eqn. 8).

Sample T yuenching (°C) log (o,,;) (S/m) 0, (S/m) X, ... (VvOL%) log (oyst) (S/m) log (o) (S/m)

Oman gabbro

1 GPa 1240 —2.08 1.5 34 —0.41 0.4

0.5 GPa 1188 -2.24 0.29 15 -1.44 -1.45

0.5 GPa 1187 -2.25 0.31 12 -1.51 -1.5

0.3 GPa 1196 -2.22 0.48 17 —-1.20 -1.2
Karelia olivinite, 1 GPa 1315 -1.92 28.8 10 0.30 0.3
Spitzbergen lherzolite

2 GPa 1465 —1.86 4.9 22 —0.10 0.1

1 GPa 1360 -2.25 2.5 14 —0.60 —0.6
Ronda lherzolite, 1 GPa 1377 -2.25 2.0 11 —0.80 —0.8
Ol + basalt sample, 1 GPa 1183 -3.06 29 4.5 —-1.05 -1.05
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mantle thickness (km)

Induction from core + mantle
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Three layer model

Assume crust thickness d
d = 50 km electrically -

insulating

r, = 1820 km

ro=1770 km.

Core radius r, = 600 — h

900 with oo conductivity.

Mantle thickness h =r, -
r, =870—-1170 km with
a range of
conductivities.

50



electrical conductivity log (1/R [S/m])

Expectations for induction field from lo:
Conductivities of rocks with melt fractions

model conductivity

conductivity of melt phase 10 S/m

1 of the anomaly in the
| 5S/m -
Andes /
] " Pyrenees / Tibetean Plateau
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mole fraction of melt phase
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Molten rocks have very “high” conductivity

4714 J. Maumus, N. Bagdassarov, and H. Schmeling

Table 9. Melt conductivity needed to model the measured molten rock conductivity with Hashin-Strikman vpper bound (Eqn. 8).

Sample T yuenching (°C) log (o,,;) (S/m) oo (S/m) X, ... (VvOL%) log (oyst) (S/m) log (o) (S/m)

Oman gabbro

1 GPa 1240 —2.08 1.5 34 —0.41 0.4

0.5 GPa 1188 -2.24 0.29 15 -1.44 -1.45

0.5 GPa 1187 -2.25 0.31 12 -1.51 -1.5

0.3 GPa 1196 -2.22 0.48 17 —-1.20 -1.2
Karelia olivinite, 1 GPa 1315 -1.92 28.8 10 0.30 0.3
Spitzbergen lherzolite

2 GPa 1465 —1.86 4.9 22 —0.10 0.1

1 GPa 1360 -2.25 2.5 14 —0.60 —0.6
Ronda lherzolite, 1 GPa 1377 -2.25 2.0 11 —0.80 —0.8
Ol + basalt sample, 1 GPa 1183 -3.06 29 4.5 —-1.05 -1.05
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127 Data, MIHD
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127 Data, MHD, solid mantle
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Induction from a magma ocean overlying solid mantle

Normalized A and ¢ forc =0.01 S/m
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3D MHD Simulation Model

We use a modified version of Linker’s lo
code with improved boundary
conditions.

The code includes charge exchange,

electron impact ionization and Pedersen
conductivity profiles defined by scale
height of neutrals (assumed spherically
symmetric) and density of charged
species (obtained self consistently from
simulations).

The total ionization rate is about
4.4*10e27 ions/s and total charge Ot

_ r
. ror
exchange is about 1.5*10E28 for 124. p(%ﬂr].vﬂ VP +IxB- A&

aa_f+v(P{./):(}/_I)K_P(v{./)+77J2+/8g‘vzzé:v2)_éfp

A IRIESEPESRIS ARG non-uniform s

spherical mesh covering a calculation r ; -
domain 0.5R, < r < 25R,, with fine aa—A—\r/x(VxA):-qu(VxA)

grids (~ 0.02R, or 40 km) near lo. i f ot ;
B=VxA , J=VxB

r
where /%:MNH/T, é;:O'pNn‘VL Nn:NOCXp(_I"
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Background field and plasma conditions used in
the MHD simulations were obtained from

observations.
10 124 127 131 132
Bx (nT) 0 0 0 0 0
By (nT) -96 518 497 -670 -240
Bz (nT) -1804 -1906 -1878 -1967 -1813
Ne (/cc) 3850 500 700 1200 3170
V (km/s) 57 57 57 57 57
T (eV) 100 30 100 100 100
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127 Data, MHD, solid mantle, Magma ocean
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The principle behind electromagnetic induction
Moon’s with internal conductivity (liquid oceans, magma oceans)

Blnduced(t) -

BPrimary(t) \

The primary and secondary

The primary and secondary
fields shown separately

fields summed together

generate a secondary or induced field which
reduces the primary field inside the conducting magma ocean.
—The induced field can be detected with a sensor.
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Callisto ocean

2 C3 data & models for A=0,0.6,0.8,1,1.35,1.7 and ¢=0 b C9 data & models for A=0,0.6,0.8,1,1.35,1.7 and ¢=0
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