

Is Io Impossible (petrologically)?

Laszlo Keszthelyi

Outline

- What Io is supposed to do
- Io doesn't listen...
- Maybe Io does this?

Starting Postulates

- Io is erupting enough lava to resurface the whole body 1 cm/year.
- Io is made of the same (generally chondritic) stuff as the rest of the Solar System

Conclusion:

- Each (silicate) part of Io should have been magmatically processed (undergone partial melting) an average of 400 times.
 - Io should have a 50 km thick low density alkali and Si-rich crust of feldspars and nepheline with melts <1100 °C
 - The bulk of the mantle should be pure forsterite
 - An Fe+Ca-rich high density lower mantle?

Robust Conclusion!

TABLE III
Comparison of Predicted Crustal Properties for the 5 Models

BASELINE	P = 1 kbar	1 wt.% H ₂ O	F = 25%	$fO_2 = QFM$
54 km	63 km	54 km	40 km	54 km
2.87	2.69	2.65	2.78	2.91
andesite-baseltic andesite	rhyolite-dacite	andesite-baseltic andesite	baseltic andesite-basalt	andesite-baseltic andesite
1010-1067	1000-1117	625–1064	1020-1091	930–1065
	54 km 2.87 andesite–baseltic andesite	54 km 63 km 2.87 2.69 andesite-baseltic andesite rhyolite-dacite	54 km 63 km 54 km 2.87 2.69 2.65 andesite-baseltic andesite rhyolite-dacite andesite-baseltic andesite	54 km 63 km 54 km 40 km 2.87 2.69 2.65 2.78 andesite-baseltic andesite rhyolite-dacite andesite-baseltic andesite baseltic andesite-basalt

Io gets to speak...

Table 1
Previously reported ionian eruptions with temperatures >1200°C

Eruption	Date	Instrument ^a	Model eruption temperature	Reference
~North Pole	06OCT1996	IRTF NSFCAM	≥1430°C ^b	Stansberry et al. (1997)
Kanehekili	03APR1997	Galileo SSI	≥1270°C ^b	McEwen et al. (1998b)
	06MAY1997	Galileo SSI	≥1210°C ^b	McEwen et al. (1998b)
	28JUN1997	Galileo SSI+NIMS	~1600°C°	Davies et al. (2001)
	08NOV1997	Galileo SSI	≥1260°C ^b	McEwen et al. (1998b)
Marduk	08NOV1997	Galileo SSI	≥1300°C ^b	McEwen et al. (1998b)
Pele	29DEC2000	Cassini ISS	≥1350°C ^b	Radebaugh et al. (2004)
	16OCT2001	Galileo SSI	≥1250°C ^d	Radebaugh et al. (2004)
	22FEB2000	Galileo NIMS	≥1280°C ^d	Lopes et al. (2001)
	20JUL1998	Galileo SSI+NIMS	~1250°C°	Davies et al. (2001)
Tvashtar	22FEB2000	Galileo SSI	≥1200°C ^b	Milazzo et al. (2005)

a IRTF NSFCAM = Infrared Telescope Facility-NSF Camera, sensitive from 1-5 μm; Galileo SSI = Solid State Imager sensitive from 0.4-1.0 μm; Galileo NIMS = Near Infrared Imaging Spectrometer sensitive from 0.7-5.2 μm; Cassini ISS = Imaging Sub System, sensitive from 0.4-1.0 μm.

b Unresolved hot spot; assumes eruption temperature is ≥200°C above the measured color temperature.

c Fit to combined SSI and NIMS data.

d Select group of pixels from image that resolves the hot spot.

Pillan 1997

1 Micron (>7.75s) + 1 Micron Exposure Clear (6.4s) Exposure (>13.8s) Pillan Pillan Streak (<4s) Pele Pele

Conclusion:

- Io is not magmatically differentiated...
 - 100% recycling of erupted lavas back into the mantle (other than incompatible volatiles)
 - Composition of Io's crust is that of a 1st generation melt.
 - Composition of Io's mantle is fertile/primitive
- What happens if the top of such a mantle is at 1300 or 1600 °C?

Mantle melting curve

Adiabatic Temperature Profiles

Melt Fraction(%)

~1300 °C is Self-Consistent?

- This is the amount of melting required to overcome the massive compressional stresses at the base of the lithosphere
- More melting results in melts too rich in Fe (and thus too dense) to want to rise through the dunite mantle

Are 1600 °C Lavas Possible?

- Yes, if the original assumptions are wrong:
 - If Io is not generally chondritic
 - If Io has been this volcanically active for <1% of geologic time

