Geophysics and Interior Processes of Rocky and Icy Bodies

Francis Nimmo (U. C. Santa Cruz)

Outline

- 1. Internal structure & rheology (McCarthy)
- 2. Tides and tidal response (Stevenson)
- 3. Tidal heating (Stevenson, Matsuyama)
- 4. Thermal-orbital evolution (Fuller)
- 5. Heat flow (Davies)

1. Internal Structures

Outer solar system moons

Planet/Satellite Shape

- Long-term shape is controlled by secular ("fluid") Love number (h_{2s})
- h_{2s} depends on density distribution (MoI)
- Can use shape to determine MoI ("Darwin-Radau approximation") – *as long as the body behaves like a fluid*
- This may not be true for small/cold bodies

Less distorted (smaller h_{2s})

More distorted (larger h_{2s})

Rheology

- Material properties are frequency-dependent!
- So tidal response depends on tidal frequency

• *Melt* and *water* also matter (poorly understood)

2. Tides

Basics

- Satellites are distorted by tides
- Time-varying stresses and heating result
- Tidal heating can be an important energy source (see below)

Amplitude of tidal response h_2, k_2

- Love numbers: dimensionless degree-2 response of shape (h₂) and gravity (k₂) to applied tidal potential
- Large k_2 , h_2 means large response
- k_2 is easier to measure . .

A.E.H. Love

- But measuring *both* is advantageous
- For a uniform, strengthless body $h_2=2.5$ and $k_2=1.5$
- Rigidity and/or density concentration will reduce Love numbers
- Effective rigidity is dependent on *forcing frequency* at long periods, body will have larger Love numbers
- So tidal h_2 , $k_2 < \text{long-term}$ ("fluid") h_2 , k_2 in general

Liquid layers affect tidal response

- Io (Bierson & Nimmo 2016)
 - Partially molten mantle k_2 =0.1

- Fully molten magma ocean $k_2=0.5$

Phase of tidal response

- Tidal response lags forcing
- This lag causes
 - spin-down
 - orbital expansion
 - tidal heating

- The phase lag ε is described by the **dissipation** factor $Q: Q \sim 1/\varepsilon$
- High *Q* means low dissipation
- Q controls the **rate** at which processes happen

Measured tidal k_2 and Q values

	Tidal k ₂	Tidal Q	Reference
Mercury	0.45	n/a	Verma & Margot 2016
Earth	0.3	~300	Jagoda et al. 2018; Ray et al. 2001
Moon (monthly)	0.024	38	Williams & Boggs 2015
Mars	0.166	~90	Konopliv et al. 2016; Lainey et al. 2007
Io	[0.1]*	[6]*	Lainey et al. 2009
Titan	0.6	n/a	Iess et al. 2012

* $k_2/Q=0.015$ from astrometry. Here I assume $k_2=0.1$

Summary

- Tidal response **amplitude** (k_2, h_2) and **phase** (Q)
- k_2, h_2, Q depend on rigidity, density and frequency
- Liquid layers increase amplitude
- Measured tidal response can be used to infer internal structure

• It helps conceptually to put yourself on the satellite surface

3. Tidal heating

Tidal heating

For a synchronous satellite:

d

$$H = \frac{3}{2} \frac{k_2}{Q} \frac{n^5 R^5}{G} \left(7e^2 + \sin^2 \theta \right)$$

depends on / eccentricity obliquity ("tilt")

- Heating depends on amplitude (k_2) and phase (Q)
- A purely elastic ($Q \rightarrow \infty$) body generates no heat

Viscoelasticity & tidal heating

• "Maxwell time" $\tau = \eta/\mu$

Runaways

- Tidal heating rate depends on k_2/Q
- But k_2/Q depends on heating rate feedbacks!

Ocean tidal heating

- A liquid ocean can experience tidal heating from obliquity tides (Tyler 2008)
- However, except for Triton, this heating is small compared to other sources

Partially-molten Io Bierson & Nimmo (2016) Spatial patterns of heat flow

 Radial structure controls pattern of heat flow

> Ocean Heating Chen et al. (2014)

Topography etc.

- Heat flux variations will create topography
 - Shell thickness variations
 - Dynamic support etc.

Where does the energy come from?

- In the first instance, from the satellite's orbit
- *e*-tides: orbit will *circularize*, heating -> 0
- θ -tides: inclination will damp, heating -> 0

- Unless a *resonance* with a neighbouring satellites excites the eccentricity/inclination
- Resonance allows the spin energy of the primary to be tapped (large reservoir)
- Can get equilibrium state in which heat dissipated depends only on *Q* of the *primary*

Summary

- Tidal heating goes as $e^2 k_2 / Q$
- Feedbacks between internal structure and heating rate
- Ocean tidal heating usually negligible
- Eccentricity of an isolated satellite will damp
- Satellites in resonance may exhibit much more complex behaviour (see below)

4. Thermal-orbital

Outwards evolution

- The rate of recession depends on $k_2/Q_{primary}$
- Outwards satellite motion may result in *resonances*
- Resonances excite the eccentricities & cause heating

- Saturn's Q is $low (\sim 2000) =$ high dissipation
- But it may not be constant with time

Feedbacks

• Satellite orbital and thermal evolution are *coupled*:

 k_2/Q is a measure of how much dissipation occurs in the satellite

• The feedback makes for complicated thermal-orbital histories – *especially* when resonances are involved

Periodic Behaviour

- Thermal adjustment timescale comparable to eccentricity evolution timescale
- Can get "hot Europa, cold Io" states
- Oscillation period comparable to Europa's surface age (~50 Myr)

5. Heat flow estimates

Why?

$$H = \frac{3}{2} \frac{k_2}{Q} \frac{n^5 R^5}{G} \left(7e^2 + \sin^2\theta\right)$$

- Measuring the total power output gives k_2/Q (assuming heat produced = heat lost)
- Measuring the spatial distribution provides information on *where* heat is produced

Direct measurements

2013 Gemini lo Observations at $3.78\mu m$ 1e-12 08-29 08-30 09-01 09-02 1.8 OB OB OB I P 1.6 RP intensity [erg/s/cm² 1.4 09-03 09-05 09-04 09-06 1.2 I P OF 1.0 RP 0.8 $/\mu m$ 09-07 09-09 09-10 0.6 0.4 OB LP LP IP 0.2 RP 0.0

Enceladus

R Spencer JR, Nimmo F. 2013. Annu. Rev. Earth Planet. Sci. 41:693–717 De Kleer et al. 2014

Indirect estimates

- Elastic/viscous response depends on temperature gradient -> heat flux
- Provides information on ancient heat fluxes

Relaxed (shallow) ancient craters Ancient heat flux > 150 mWm⁻² (Bland et al. 2012)

Takeaways

- Material properties are frequency-dependent
- k_2 gives amplitude, Q gives phase
- k_2 depends on rigidity & density structure
- Satellite tidal heating goes as $e^2 k_2 / Q_{satellite}$
- Heating rate depends on structure feedbacks
- Heating pattern depends on internal structure
- Heating damps eccentricity (absent resonances)
- Orbital recession rate depends on $k_2/Q_{primary}$
- Thermal-orbital feedbacks & resonances
- Can use geophysics to infer heat fluxes