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Uranus (and Neptune) represents a unique
unexplored planetary class

Open fundamental questions:
* How do planets like Uranus form & evolve?

* What is Uranus made of?




Both Uranus and Neptune exhibit rich systems from the mysterious
interiors, atmospheres and magnetospheres, to diverse satellites and rings
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Exoplanet context

Atreya et al. 2020
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Uranus: Basic Facts

Mass = 14.5 Mg @ 19.2 AU

Temperature at 1 bar: 76 £ 2 K
Y= 0.275 (proto-solar, very uncertainl)

Fast rotation, strong winds

Water-rich?
Distinct layers?
Where & how did it form?

~2000 K, 0.1
Mbar

B molecular H,, helium, ices

Ices, mixed with rocks? Mixed with H-He?
Rocks, mixed with ice?

mixed interiors
(composition gradients)




Making an interior model

Basic idea of interior models: observations as constraints
more accurate measurements 2> less freedom in modeling

Assumptions:
spherical symmetry & hydrostatic equilibrium

Interior parameters:
density, pressure, temperature

Planetary basic equations: Traditional 3-layer models:
1) Central Core (rocks)

2) Inner Envelope (ices)
3) Outer Envelope (H-He+Z)

mass conservation, hydrostatic equilibrium, heat
transport, energy conservation, EOS



Observational Constraints e atmos T

* Mass

* Radius (shape)

ionic water?

* Rotation rate
* Gravitational Moments
* 1 bar temperature

* Atmospheric composition (if available)

—> Composition provides constraints on (1) the conditions
in the solar nebula, (2) the planetary formation location
and (3) formation timescale.



* Gravity data are insufficient to constrain the composition & internal structure.

Structure and chemical composition are inferred indirectly from the model
(and strongly depend on the assumptions)

- Constraints on the density
_ profile of the planets

N . High-order harmonics provide
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*Only J, and J, are available with large uncertainties

— a large range of possible

internal structures and
compositions
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Do Uranus & Neptune have distinct layers?
What is the bulk composition?

phase boundary phase boundary

* Connection to high-pressure
ices & rocks ices & rocks physics coo

Constraints from seismology?

(c) ' (d) v

Given the data we have, Uranus and Neptune can also be rock-dominated

Uranus and Neptune are unique planets — they are e.g., Stevenson, 1985
different from the terrestrial planets and the gas giants. Lozovsky, Helled et al., 2017
We still not have a good modeling approach! Helled & Stevenson, 2017

+....




Empirical models

Uranus
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lce or rock giant?

* Given the data we have, Uranus could also be rock-dominated

water —rich? Three-layers? silicate—rich? Three- No distinct layers?
layers? !

Helled et al., 2011.
Reasons to believe U&N are water-rich:

(1) Magnetic fields =is it really?
(2) Water is abundant at these distances = what about Pluto?



Magnetic fields - Interiors

Uranus e Neptune

Complex multipolar nature of magnetic fields
Where are the magnetic fields generated?
What is the depth of the winds and how is connected to the structure?

Constraints on interior: convective layer +conducting material

determme rotation period of the plqnets

Neptune
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Latitude (90 — 0) [deg]

What is the rotation rate of Uranus?
What is the shape of Uranus?
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How deep are the winds?
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Terrestrial planets Neptunes, mini-Neptunes Gas giants

Formation of a heavy- The core is massive enough | The gas accretion rate
element core via to accrete and retain gas exceeds the solid
planetesimal /pebble (H-He) accretion rate
accretion —> runaway growth
Planet Formation ;
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Are Uranus and Neptune failed giant planets?
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Formation of Uranus & Neptune

Uranus and Neptune have 2 Mg and 3 Mg of H-He, respectively.
Metallicity of ~ 85% (but model dependent).

* Similar formation process like J&S but slower:
* On one hand, must form before the gas dissipates.
* On the other hand, should not become gas giant planets.

see Helled & Fortney, 2020 and Helled+2020 for recent reviews



Potential Formation paths:

—l

. Formation closer to the sun (Nice Model)

2. Disk physics/chemistry — disk evolution, enhancing the solids

3. High accretion rates: pebble accretion, dynamically cold
planetesimal disk

4. Formation via impacts of ~5 Mg embryos




In-situ Formation of Uranus & Neptune
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Connecting the internal structure with growth history

The heavy-element profile within the
planet’s deep interior (before
runaway) reflects its accretion history!

MZ,env(M)

Z(m) - Mx?J(M) + MZ,env(M)

Y

Helled & Stevenson 2017
Valletta & Helled, 2020, 2022
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Uranus’ strange tilt (and moons)

[URANUS TILT

Earth: 23° Uranus: 97°



Despite the similar masses/sizes Uranus and Neptune differ in:
* Large tilt (~97°) of Uranus and its satellites

* Large difference in observed heat flux

* Satellite systems

* (Inferred) Moment of Inertia

Maybe Uranus and Neptune were initially

Stevenson, 1986 similar shortly after formation and the
Podolak & Helled, 2012 . . .
Reinhardt et al., 2020 differences are a result of giant impacts?



Giant Impacts:

Uranus: Oblique Collision Neptune: Radial Collision

Uranus Neptune

O

could deposit energy deep inside, mix

tilt its spin axis and eject enough material to its interior resulting in a nearly
form a disk where the regular satellites are adiabatic interior.
formed.

might also explain the missing heavy-element mass...



Mi=14.5 Mgy, vo=5 km/s
Heqd-on co"ision (b=0.2): Uranus tilt rotation axis

* Impactor’s material and energy
are deposited in the deep
interior 2 an adiabatic interior

and high flux?

oblique impact leads to

+ proto-satellite disk

Neptune mix interior

Grazing collision (b=0.7):
* Increase in angular momentum

) V X head-on impact leads to
- change of tilt, disk formation,

deep interior is relatively
unaffected

But much more work is needed... Reinhardt et al., 2020



Can Uranus’ moons form from the post-impact disk?

Woo et al, 2021
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Artistic illustration of the formation of the largest moons of Uranus.
Image: Tobias Stierli
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Ida+2020, Kegerreis+2018 and references therein



Uranus’ strange luminosity

The low luminosity of Uranus challenges
the assumption of adiabatic cooling...
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Uranus’ long-term non-adiabatic evolution

. . . . . «10*
Non-adiabatic interior+evolution gy 0

D

of Uranus.

e Convective mixing is limited to
Uranus’ deep interior

* The composition gradient
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persists and can explain Uranus’
measured luminosity.

* Uranus’ interior could be very
hot, despite its low luminosity.

Temperature (K)
O

Density (g/cm?)
w

n

°
()}
-

o

o

0 0.5 1 0.5 1
Normalised radius Normalised radius

o

Vazan & Helled, 2020




Connect interior models with planetary
formation and evolution models

Planet Formation

Internal structure

X R84
e 22 AR

Planet Evolution




Summary & Future Research

* Key fundamental questions remain:

* How did Uranus form and evolve?
* What is the composition and internal structure of Uranus?
* What is the rotation rates of Uranus?¢ How deep do the winds go?

* How different are Uranus and Neptune? What is the origin of these
differences?

* How is Uranus’ magnetic field generated?

**Uranus and Neptune could form in-situ.
**The planetary structure can be complex.

*»*Giant impacts might have played an important role in their evolution.



Future Research

* Understanding the behaviour of planetary materials, and their mixtures:

* Further improvements in EOS calculations and experiments of volatile materials
such as water, ammonia, methane, their mixtures, as well as their mixtures with
rock or with hydrogen (and helium)

* Prepare for the upcoming space mission: identify the key measurements
and develop the theoretical framework for the data interpretation

* Connection to exoplanets




