Measurements to Constrain Uranus's Interior Structure

Krista Soderlund

KISS Short Course:

What Do We Know About Uranus's Interior? Preparing for a Mission to Uranus

TEXAS Geosciences

The University of Texas at Austin Jackson School of Geosciences *Institute for Geophysics*

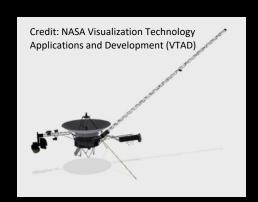
Outline

- Techniques traditionally used to infer giant planet interior structure
 - Voyager 2 observations
 - Old data, new analyses

- New and emerging techniques
 - Lessons from Jupiter, Saturn, and exoplanets

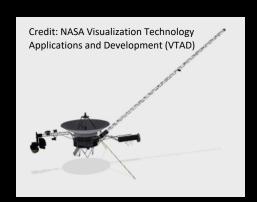
 Knowledge gaps that limit our ability to interpret measurements

Outline


- Techniques traditionally used to infer giant planet interior structure
 - Voyager 2 observations
 - Old data, new analyses

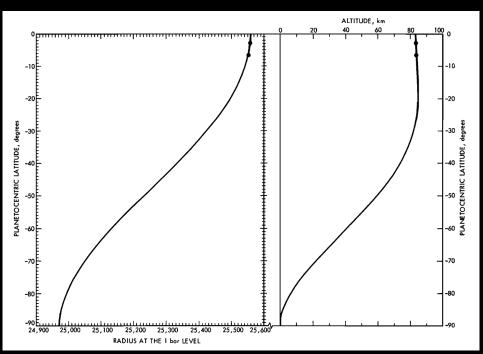
- New and emerging techniques
 - Lessons from Jupiter, Saturn, and exoplanets

 Knowledge gaps that limit our ability to interpret measurements


Traditional Techniques

- Voyager 2
 - 1) Imaging Science System (ISS)
 - Ultraviolet Spectrometer (UVS)
 - 3) Infrared Interferometer Spectrometer (IRIS)
 - Planetary Radio Astronomy Experiment (PRA)
 - 5) Photopolarimeter (PPS)
 - 6) Triaxial Fluxgate Magnetometer (MAG)
 - 7) Plasma Spectrometer (PLS)
 - 8) Low-Energy Charged Particles Experiment (LECP)
 - 9) Plasma Waves Experiment (PWS)
 - 10) Cosmic Ray Telescope (CRS)
 - 11) Radio Science System (RSS)

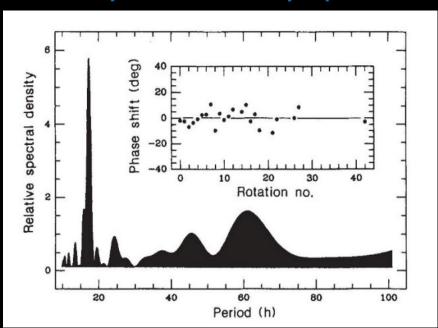
Traditional Techniques


- Voyager 2 at Uranus
 - 1) Imaging Science System (ISS)
 - Ultraviolet Spectrometer (UVS)
 - 3) Infrared Interferometer Spectrometer (IRIS)
 - 4) Planetary Radio Astronomy Experiment (PRA)
 - 5) Photopolarimeter (PPS)
 - 6) Triaxial Fluxgate Magnetometer (MAG)
 - 7) Plasma Spectrometer (PLS)
 - 8) Low-Energy Charged Particles Experiment (LECP)
 - 9) Plasma Waves Experiment (PWS)
 - 10) Cosmic Ray Telescope (CRS)
 - 11) Radio Science System (RSS)

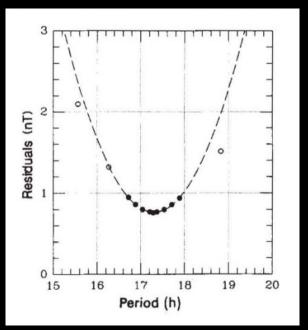
Physical Shape

- Voyager 2 at Uranus
 - Physical shape via radio occultations near the equator and extrapolated to the poles using gravity field data and zonal winds

Radio Science System

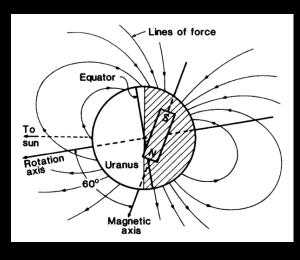


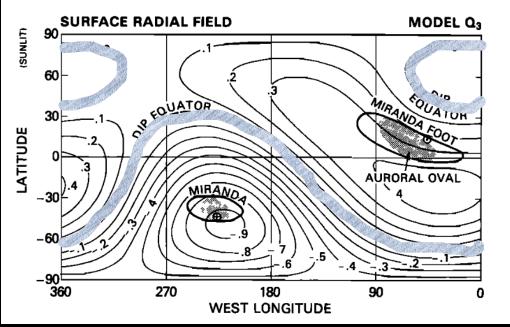
Credit: Lindal et al. 1987


Rotation Period

- Voyager 2 at Uranus
 - Rotation period of 17.24 hours via radioastronomy and 17.29 hours via magnetometer observations

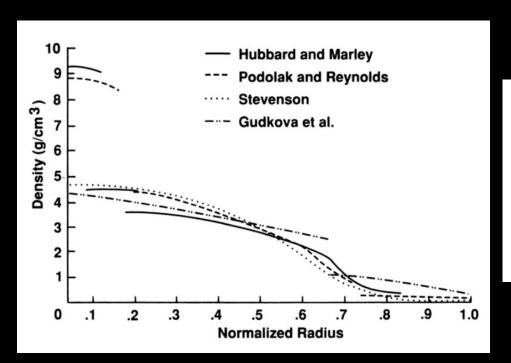
Planetary Radio Astronomy Experiment


Triaxial Fluxgate Magnetometer



Credit: Desch et al. 1986 Credit: Desch et al. 1986

Intrinsic Magnetic Field

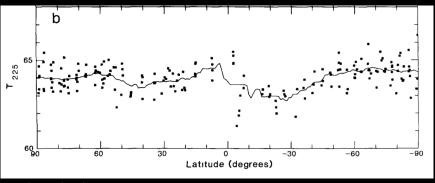

- Voyager 2 at Uranus
 - Magnetic field far from the planet can be approximated by an offset tilted dipole
 - Magnetic field has a large dipole tilt and unusually large quadrupole component
 Triaxial Fluxgate Magnetometer

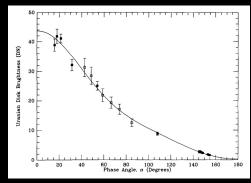
Credit: Ness et al. 1986 Credit: Connerney et al. 1987

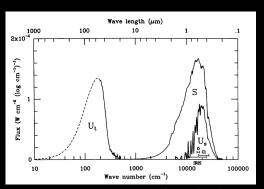
- Voyager 2 at Uranus
 - Internal structure models use gravitational moments to infer the density distribution within the planet
 - Even if the density profile is well determined, its implications for composition and temperature are not unique

Radio science subsystem

Pressure (Mbar)	Density (g cm ⁻³)				
	Pure Ice	0.8 Rock 0.2 Gas	0.75 Rock 0.25 Gas	0.7 Rock 0.3 Gas	
0.25	1.37	1.61	1.32	1.16	
0.50	1.75	1.99	1.72	1.48	
1.00	2.18	2.56	2.19	1.92	
2.00	2.79	3.31	3.85	2.51	
4.00	3.81	4.26	3.72	3.31	
8.00	5.30	5.75	5.20	4.55	

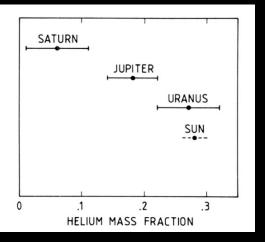

Credit: Podolak et al. 1991


Energy Balance


- Voyager 2 at Uranus
 - Energy balance (ratio of emitted thermal flux to the absorbed solar flux) suggests a relatively weak internal heat source
 - Nearly uniform latitudinal distribution of atmospheric temperatures

DETERMINATIONS OF THE ALBEDO AND ENERGY BALANCE OF URANUS					
Reference	p	q	Α	$T_{ m eff}$	Energy balance
Lockwood et al (1983)	0.262 ± 0.008 "	1 50+0 14	0.348 - 0 430	57.0 ± 2.5^{b}	<1 24
Neff et al. (1985)	0.28 ± 0.02^a	1 2	0.34 ± 0.02	$58.6 \pm 2.0^{\circ}$	<1 48
Pollack et al (1986) ^d	0.253 ± 0.046	1.26 ± 0.11	0.319 ± 0.051	$57.7 \pm 2.0^{\circ}$	<1 27
This investigation ^d	0.215 ± 0.046	1.40 ± 0.14	$0\ 300\ \pm\ 0.049$	59.1 ± 0.3	<1 14

Infrared spectrometer and radiometer



Atmospheric Composition

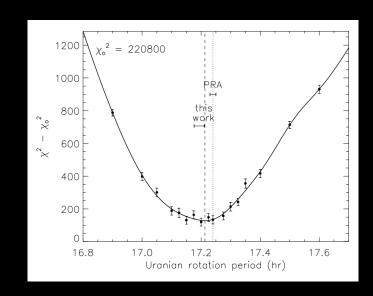
- Voyager 2 at Uranus
 - Observations covering the UV, visible, infrared, and radio wavelength regions imply that Uranus' atmosphere is enriched in heavy elements relative to solar composition
 - CH₄ /H₂ volume mixing ratio was enhanced ~24 times solar
 - NH₃/H₂ volume mixing ratio was depleted ~100-200 times solar
 - He mole fraction suggests helium differentiation has not occurred
 - H₂O/H₂ mixing ratio was estimated to be ~9%

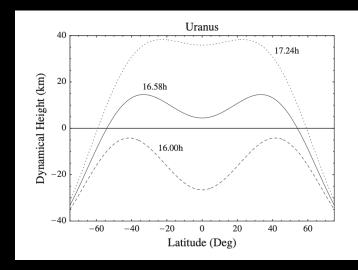
Infrared Interferometer Spectrometer & Ultraviolet Spectrometer

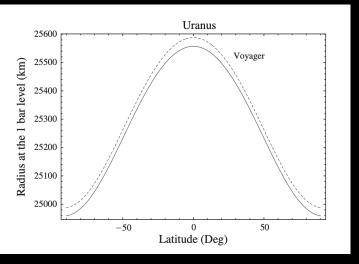
Molecule	Column Abundance ^a (cm am)	Volume Mixing Ratio ^b	Reference
NH ₃	5	1.6×10^{-7}	Fink & Larson 1979
H ₂ S	30	1.0×10^{-6}	
$C_2^2H_4$	20	6.7×10^{-7}	
CH ₃ NH ₂	10	3.3×10^{-7}	
co' '	_	2×10^{-4}	Caldwell et al. 1981
CO	_	1×10^{-6}	de Bergh et al. 1985

Credit: Fegley et al. 1991 Credit: Fegley et al. 1991

Outline

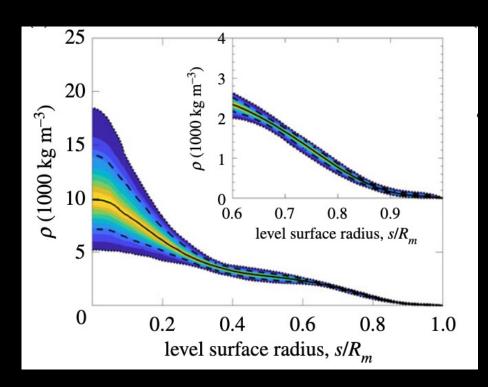

- Techniques traditionally used to infer giant planet interior structure
 - Voyager 2 observations
 - Old data, new analyses

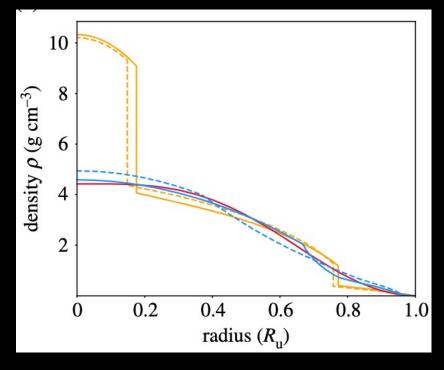

- New and emerging techniques
 - Lessons from Jupiter, Saturn, and exoplanets


 Knowledge gaps that limit our ability to interpret measurements

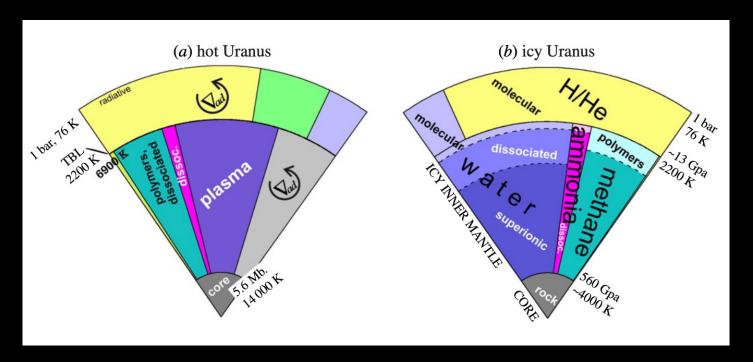
Shape and Rotation Period

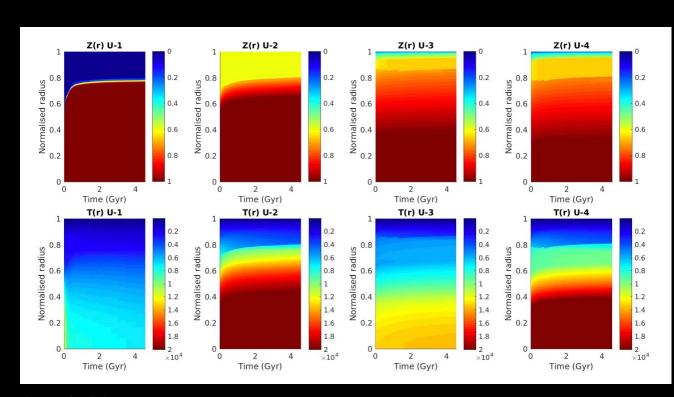
- Minimization of dynamic heights of the 1 bar isosurfaces leads to rotation period of 16.58 hours
 - Slower than that estimated previously by radio occultations, magnetic field data, and UV spectrometer data of ~17.2 hours
 - Implications for gravity data interpretation and zonal flows

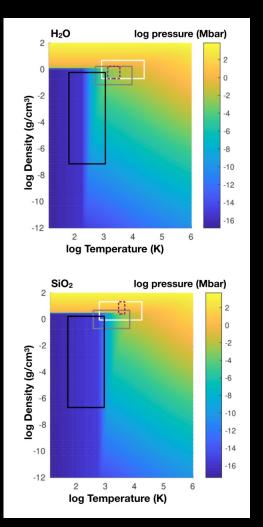




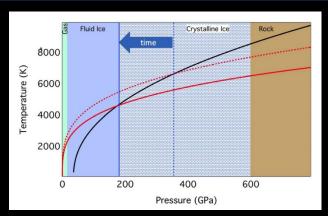
Credit: Helled et al. 2010

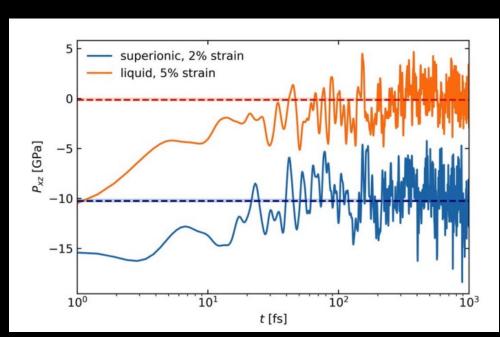

- Composition-agnostic models of density distribution
- Moving away from three-layer models to continuous models with improved equations of state

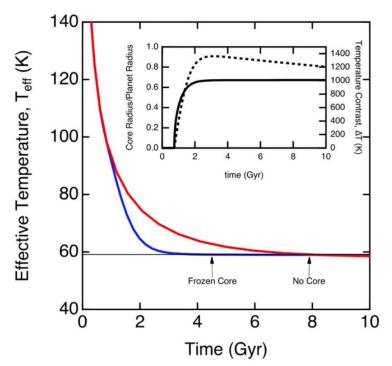

Credit: Helled et al. 2020


- Composition-agnostic models of density distribution
- Moving away from three-layer models to continuous models with improved equations of state
- Moving towards models with non-adiabatic regions

Credit: Nettelmann et al. 2016 Credit: Bethkenhagen et al. 2017

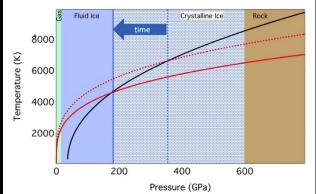

- Models with non-adiabatic regions, including their evolution over time
 - Mixtures of water and rock

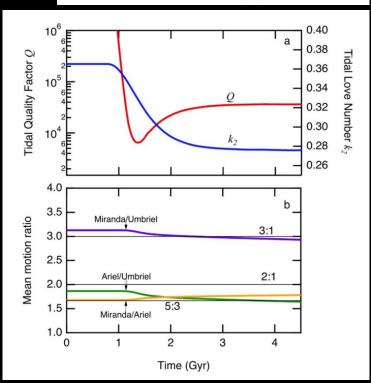




Credit: Vazan & Helled 2020 Credit: Vazan & Helled 2020

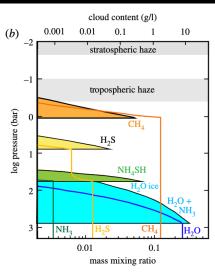
- Models with non-adiabatic regions, including their evolution over time
 - Growing frozen core of superionic ice

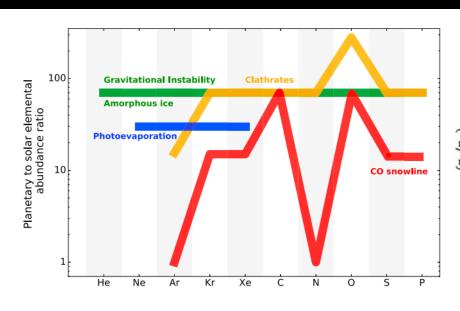


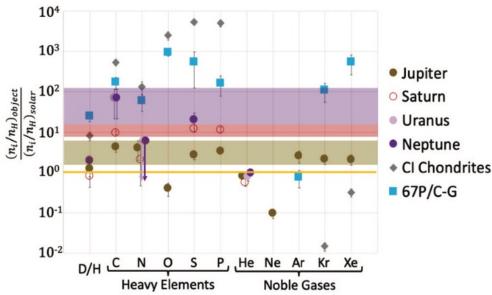

Credit: Stixrude et al. 2021 Credit: Stixrude et al. 2021

Satellite Orbits

- Models with non-adiabatic regions, including their evolution over time
 - Growing frozen core of superionic ice

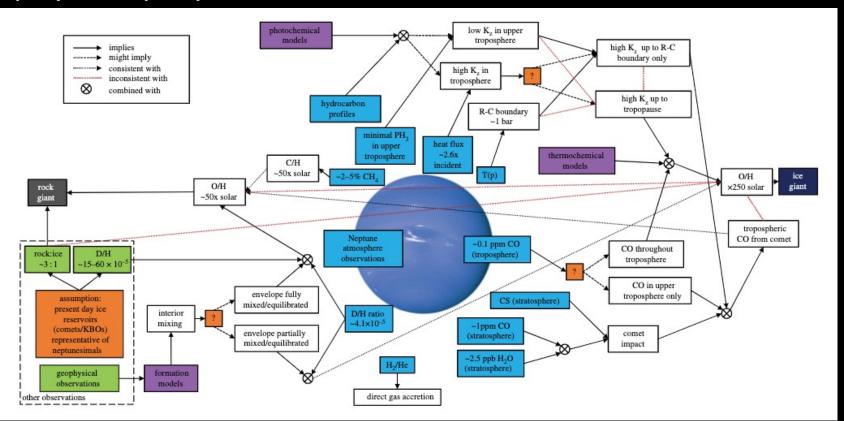

- Predicts time-varying tidal dissipation that matches the requirements of the orbits of Miranda, Ariel, and Umbriel
 - Testable predictions include the tidal Love number of Uranus and the current recessional rates of its moons



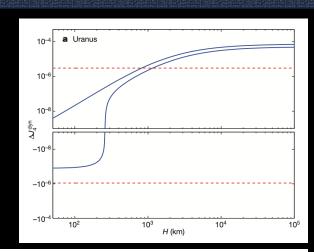

Credit: Stixrude et al. 2021 Credit: Stixrude et al. 2021

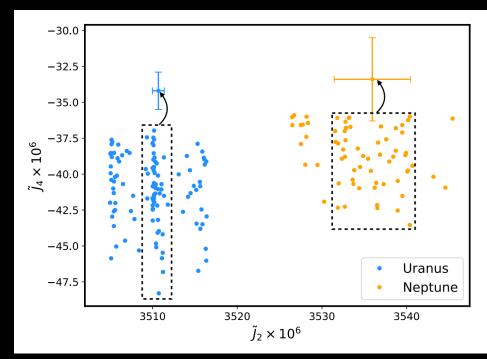
Atmospheric Composition

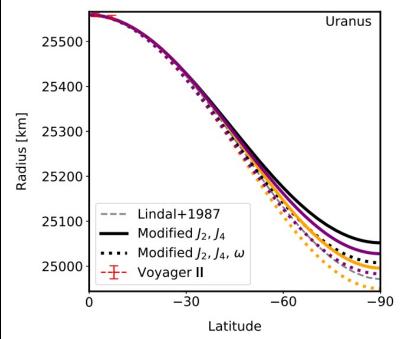
 Different formation scenarios have distinct predictions for enrichments in volatiles compared to solar abundances



Credit: Mousis et al. 2018 Credit: Moses et al. 2020

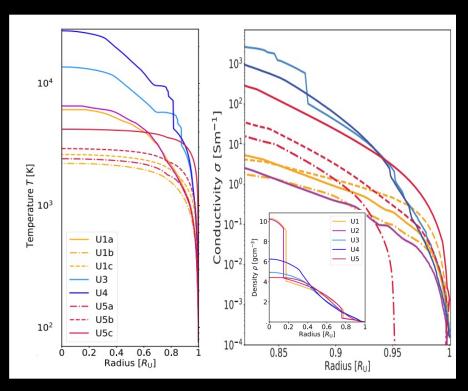

Atmospheric Composition

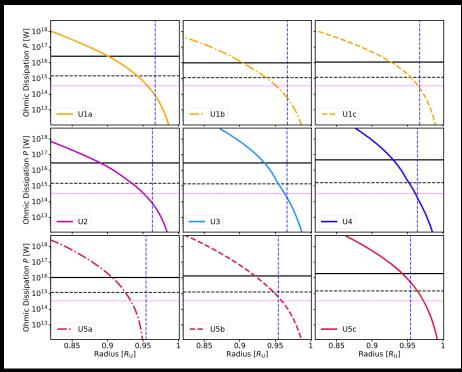

 Rock giant and ice giant scenarios with various degrees of interior mixing can fit the observed fundamental physical properties



Zonal Wind Depth

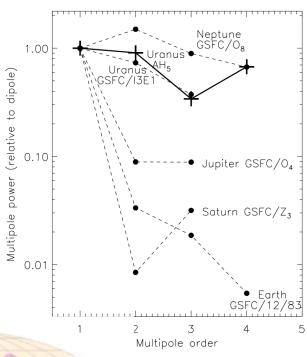
 Zonal winds likely confined to outer 2-3% of the planet using gravity, shape, and rotation rate measurements

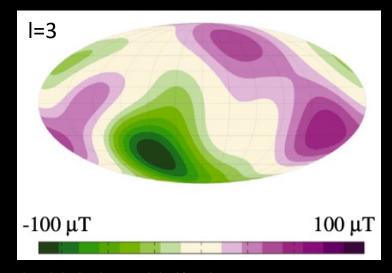


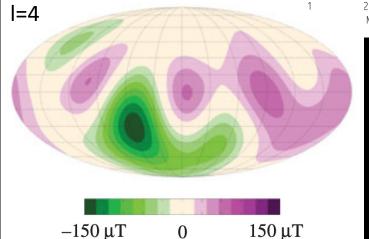


Credit: Soyuer et al. 2023

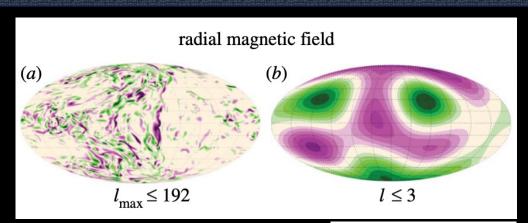
Zonal Wind Depth

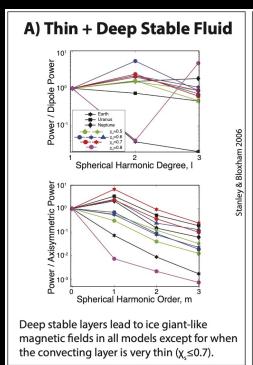

- Zonal winds likely confined to relatively shallow outer region of the planet using estimates of Ohmic dissipation and electrical conductivity measurements
 - Detectable magnetic field perturbation (Soyuer et al. 2021)?

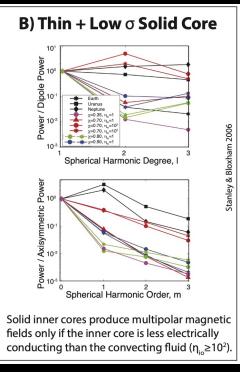


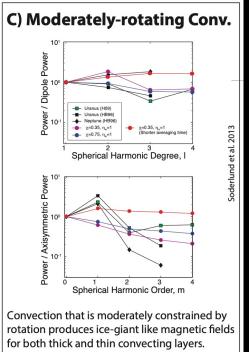


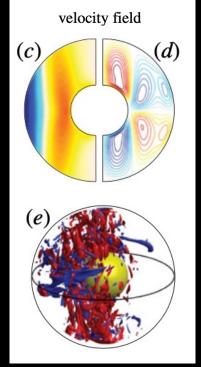
Credit: Kaspi et al. 2013


 Auroras at the magnetic field line footprints serve as additional constraints to determine the higher multipole moments of the intrinsic dynamo








 Dynamo models test hypotheses for both internal structure and dynamics

Credit: Soderlund & Stanley 2020 Credit: Soderlund et al. 2013

Outline

- Techniques traditionally used to infer giant planet interior structure
 - Voyager 2 observations
 - Old data, new analyses

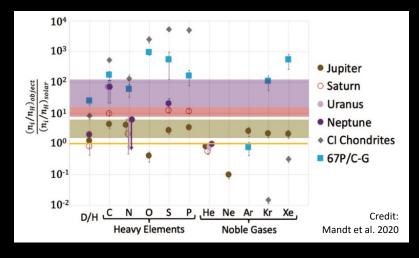
- New and emerging techniques
 - Lessons from Jupiter, Saturn, and exoplanets

 Knowledge gaps that limit our ability to interpret measurements

Lessons from the Galileo Probe

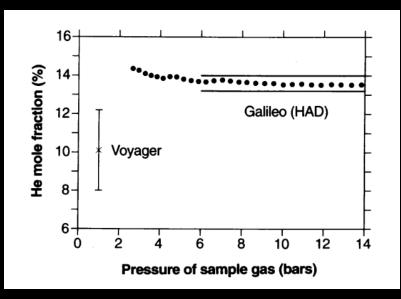

Galileo Probe

- 1) Atmospheric Structure Instrument (ASI)
- Energetic Particle Detector (EPI)
- 3) Lightning/Radio-Emission Detector (LRD)
- 4) Helium Abundance Detector (HAD)
- 5) Nephelometer (NEP)
- 6) Net Flux Radiometer (NFR)
- 7) Neutral Mass Spectrometer (NMS)
- 8) Doppler Wind Experiment (DWE)
- 9) Radio Scintillation Experiment


Lessons from the Galileo Probe

- Galileo Probe at Jupiter
 - 1) Atmospheric Structure Instrument (ASI)
 - Energetic Particle Detector (EPI)
 - 3) Lightning/Radio-Emission Detector (LRD)
 - 4) Helium Abundance Detector (HAD)
 - 5) Nephelometer (NEP)
 - 6) Net Flux Radiometer (NFR)
 - 7) Neutral Mass Spectrometer (NMS)
 - 8) Doppler Wind Experiment (DWE)
 - 9) Radio Scintillation Experiment

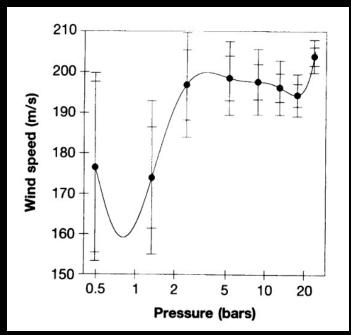
Atmospheric Composition


 Elemental abundances and isotopic ratios can be compared to solar values to test origin and evolution hypotheses

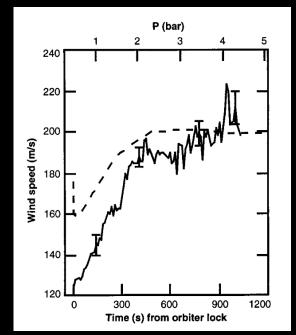
Quadrupole mass spectrometer

Species	Jovian atmosphere	Ratio to solar value	Prior results
⁴ He ²⁰ Ne ³⁶ Ar ⁸⁴ Kr ¹³² Xe CH ₄ H ₂ O NH ₃ H ₂ S	0.156 ± 0.006 $(2.3 \pm 0.25) \times 10^{-5}$ $(1.0 \pm 0.4) \times 10^{-5}$ $\leq (8.5 \pm 4) \times 10^{-9}$ $\leq (5 \pm 2.5) \times 10^{-9}$ $(2.1 \pm 0.15) \times 10^{-3}$ $\leq (3.7 \pm 0.35) \times 10^{-4}$ $\leq (3.5 \pm 0.3) \times 10^{-3}$ $(7.7 \pm 0.5) \times 10^{-5}$	0.80 0.10 1.6 ≤5 ≤ 50 2.9 ≤ 0.2 ≤ 16 2.2	0.11 2.2×10^{-3} 2.5×10^{-4}
D/H ³ He/ ⁴ He ¹³ C/ ¹² C	$(5 \pm 2) \times 10^{-5}$ $(1.1 \pm 0.1) \times 10^{-4}$ 0.0108 ± 0.0005	1.0	$(2.0, 3.6) \times 10^{-5}$

Helium Abundance Interferometer



Credit: Niemann et al. 1996 Credit: von Zahn & Hunten 1996


Zonal Winds

- Deep winds were identified via Doppler effects in the probe relay carrier frequency and at Earth-based radio observatories
- Sustained speeds of ~200 m/s to 24 bars

Doppler Wind Experiment

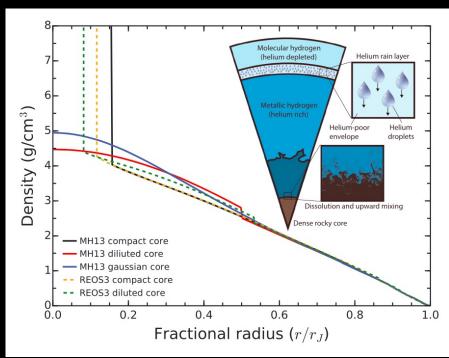
Very Large Array (ground-based)

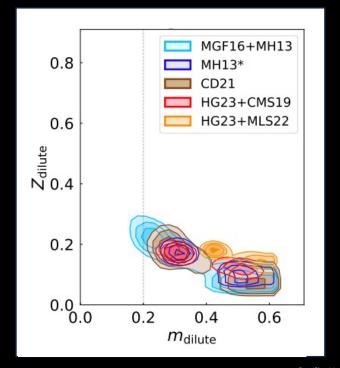
Credit: Atkinson et al. 1996

Lessons from Juno

Juno

- 1) Gravity/radio science system (Gravity Science)
- 2) Six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- Vector magnetometer (MAG)
- 4) Plasma and energetic particle detectors (JADE and JEDI)
- 5) Radio/plasma wave experiment (Waves)
- 6) Ultraviolet imager/spectrometer (UVS)
- 7) Infrared imager/spectrometer (JIRAM)
- 8) Visible color imager (JunoCam)
- 9) Stellar reference unit (SRU)

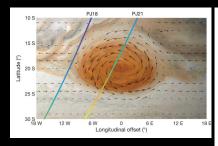

Lessons from Juno

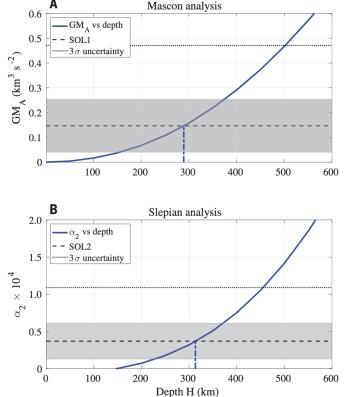

- Juno at Jupiter
 - 1) Gravity/radio science system (Gravity Science)
 - 2) Six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
 - 3) Vector magnetometer (MAG)
 - 4) Plasma and energetic particle detectors (JADE and JEDI)
 - 5) Radio/plasma wave experiment (Waves)
 - 6) Ultraviolet imager/spectrometer (UVS)
 - 7) Infrared imager/spectrometer (JIRAM)
 - 8) Visible color imager (JunoCam)
 - 9) Stellar reference unit (SRU)

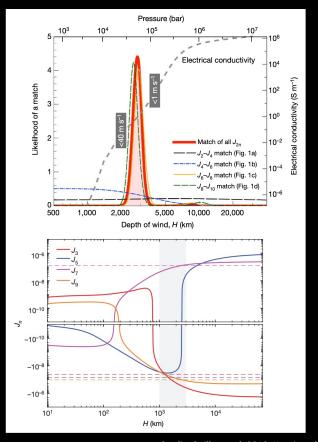
Dilute Core

- Low-order, even gravitational moments (J₂–J₈) suggest a dilute core
 - Extent of dilute core and its mass of heavy elements depends on the equation of state

Gravity/radio science system

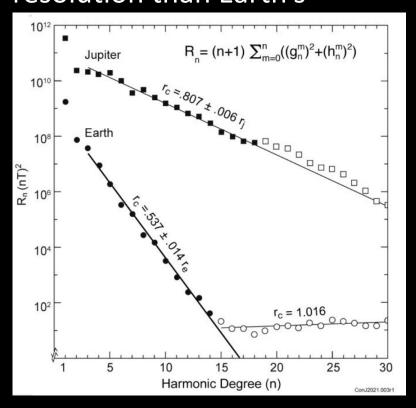


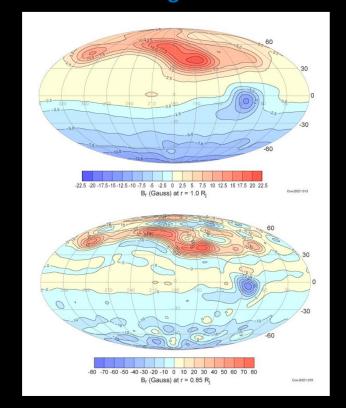

Credit: Wahl et al. 2017 Credit: Howard et al. 2023


Atmospheric Dynamics

 Gravitational data can assess the depth of vortices, such as the Great Red Spot, as well of the zonal winds

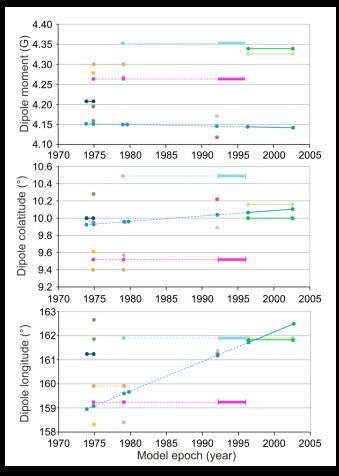
Gravity/radio science system

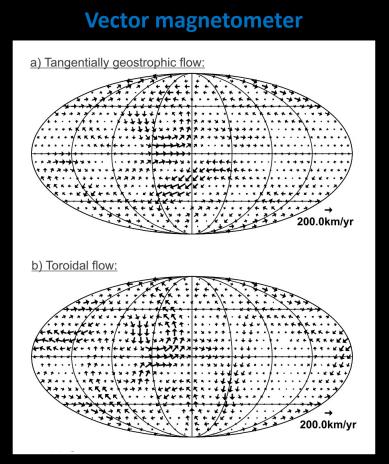




 Magnetic field model out to spherical harmonic degree 18!

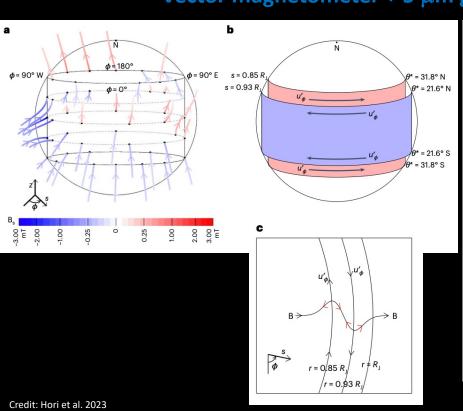
Know Jupiter's intrinsic magnetic field to higher spatial resolution than Earth's

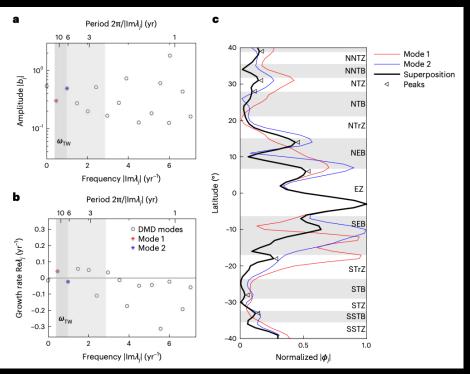

Vector magnetometer



Credit: Connerney et al. 2021 Credit: Connerney et al. 2021

 Magnetic field evolution over time can be used to infer flow speeds and directors in the interior

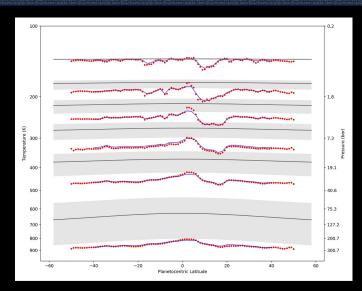


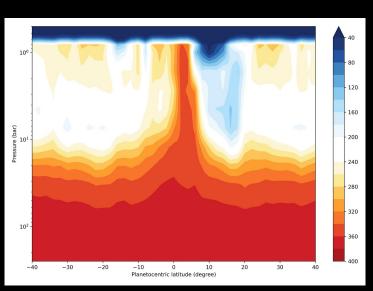


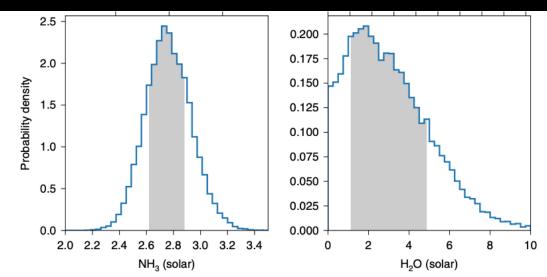
Credit: Connerney et al. 2021 Credit: Ridley & Holme et al. 2015

 Magnetic torsional oscillations arising from the dynamo region could modulate the heat transport and be responsible for variability of tropospheric banding

Vector magnetometer + 5 μm ground-based observations

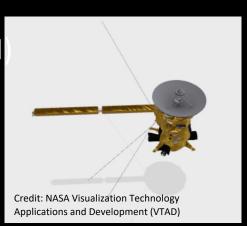



Credit: Hori et al. 2023


Deep Atmosphere Structure

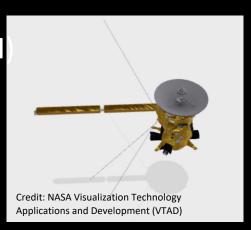
- Microwave radiometer measured thermal emission from ~1 to >300 bars
 - Map of ammonia abundance and estimates of water abundance

Microwave Radiometer



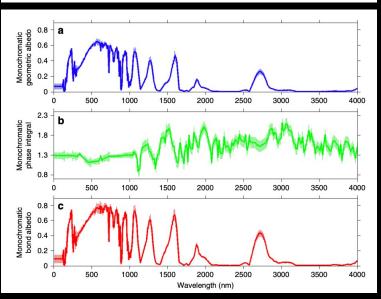
Credit: Li et al. 2017

Lessons from Cassini


Cassini

- 1) Composite Infrared Spectrometer (CIRS)
- Imaging Science Subsystem (ISS)
- Ultraviolet Imaging Spectrograph (UVIS)
- 4) Visible and Infrared Mapping Spectrometer (VIMS)
- 5) Cassini Plasma Spectrometer (CAPS)
- 6) Cosmic Dust Analyzer (CDA)
- 7) Ion and Neutral Mass Spectrometer (INMS)
- 8) Magnetometer (MAG)
- 9) Magnetospheric Imaging Instrument (MIMI)
- 10) Radio and Plasma Wave Science (RPWS)
- 11) Radar
- 12) Radio Science Subsystem (RSS)

Lessons from Cassini


- Cassini at Jupiter
 - 1) Composite Infrared Spectrometer (CIRS)
 - Imaging Science Subsystem (ISS)
 - Ultraviolet Imaging Spectrograph (UVIS)
 - 4) Visible and Infrared Mapping Spectrometer (VIMS)
 - 5) Cassini Plasma Spectrometer (CAPS)
 - 6) Cosmic Dust Analyzer (CDA)
 - 7) Ion and Neutral Mass Spectrometer (INMS)
 - 8) Magnetometer (MAG)
 - 9) Magnetospheric Imaging Instrument (MIMI)
 - 10) Radio and Plasma Wave Science (RPWS)
 - 11) Radar
 - 12) Radio Science Subsystem (RSS)

Energy Balance

 Jupiter's internal heat is significantly larger than the previous best results (5.4 W m⁻²) based on Pioneer and Voyager observations

Table 1 Jupiter's radiant energies and internal heat			
Parameter Power			
Reflected solar radiation	$6.693 \pm 0.160 \mathrm{W}\mathrm{m}^{-2}$		
Absorbed solar radiation	$6.613 \pm 0.160 \text{ W m}^{-2}$		
Emitted thermal radiation	$14.098 \pm 0.031 \mathrm{W}\mathrm{m}^{-2}$		
Internal heat	$7.485 \pm 0.163 \mathrm{W}\mathrm{m}^{-2}$		

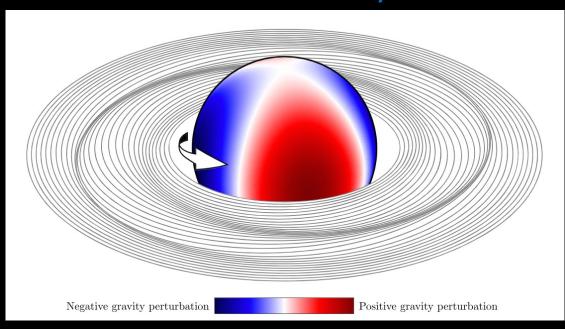
 Saturn's emitted power also appears to be time-variable

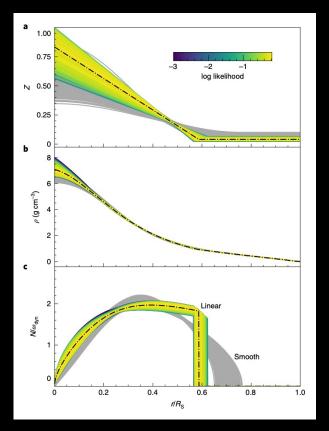
Composite Infrared Spectrometer (CIRS)

	Global Average	NH Average	SH Average
Emitted power (W/m²) Standard deviation (W/m²) Effective temperature (K) Standard deviation (K)	4.952	4.573	5.331
	±0.035	±0.014	±0.058
	96.67	94.77	98.47
	±0.17	±0.07	±0.27

	Pioneer 11	Voyager 1	Cassini
Time	September 1979	November 1980	May 2009
Solar longitude (°)	353.6	8.6	357.4
Emitted power (W/m ²)	4.91	4.614	4.9108
Uncertainty (W/m ²)	± 0.50	± 0.075	± 0.0048
Effective temperature (K)	96.5	95.00	96.470
Uncertainty (K)	±2.5	±0.4	± 0.023

Credit: Li et al. 2018 Credit: Li et al. 2010


Ring Seismology

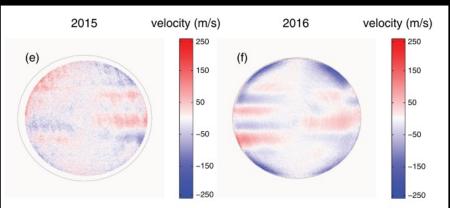

 Gravity couples normal mode oscillations to the orbits of ring particles

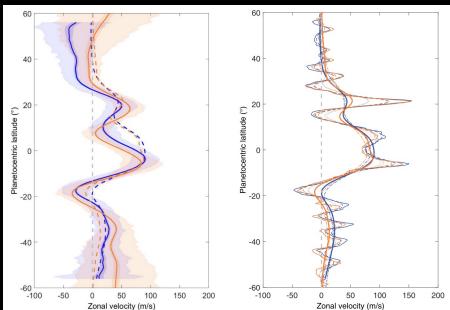
Stably stratified region near Saturn's center that extends to

approximately 60% of the radius

Visible and Infrared Mapping Spectrometer & Radio Science Subsystem

Credit: Mankovich 2019 Credit: Mankovich & Fuller 2021

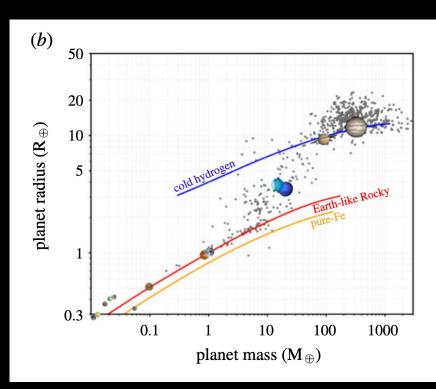

Doppler Imaging of Jupiter

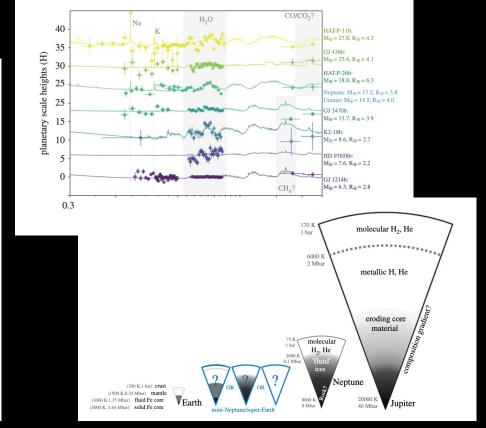

- Doppler spectrometry for giant planets is inspired by helioseismology to probe deep internal structures
 - Detection of global oscillation modes, whose properties are a function of the internal density profile

• Monitors the position of a spectral line that probes an atmospheric level where the amplitude of acoustic modes is

maximum

Doppler spectro-imager JOVIAL-JIVE

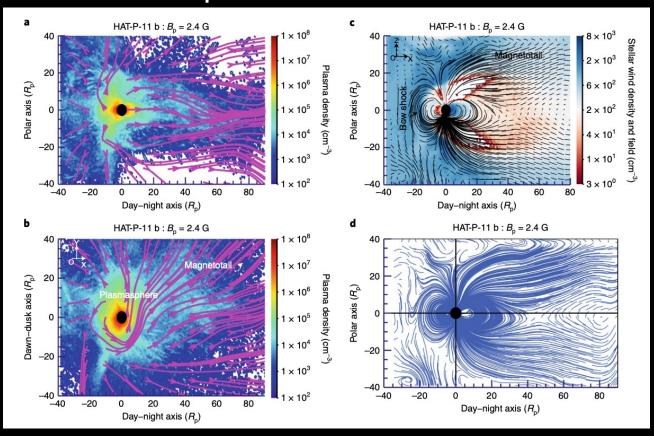




Credit: Gonçalves et al. 2019

Lessons from Exoplanets

 Uranus and Neptune offer a direct link between gas giants and terrestrial planets / icy moons of our solar system and exoplanetary systems

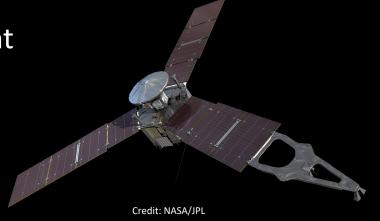


Credit: Wakeford & Dalba 2020 Credit: Wakeford & Dalba 2020

Lessons from Exoplanets

 HST ultraviolet observations indicate strong magnetization and metal-poor atmosphere for a Neptune-sized exoplanet

Outline


- Techniques traditionally used to infer giant planet interior structure
 - Voyager 2 observations
 - Old data, new analyses

- New and emerging techniques
 - Lessons from Jupiter, Saturn, and exoplanets

Knowledge gaps that limit our ability to interpret measurements

Uranus Orbiter and Probe

- Uranus Orbiter and Probe
 - 1) Magnetometer
 - Narrow angle camera
 - 3) Wide angle camera
 - 4) Thermal IR camera
 - 5) Visible-Near IR imaging spectrometer
 - 6) Fields and particle suite
 - 7) Radio science and ultrastable oscillator
 - 8) Atmospheric structure instrument
 - 9) Mass spectrometer
 - 10) Ultrastable oscillator
 - 11) Ortho-para hydrogen sensor

Uranus Orbiter and Probe

	Science Objective	Measurement	Nominal Instrument	Mission Functional Requirement
		A Cloud ton zonal and 2D winds		Repeated views of same features over timescales of minutes to
		waves to ~10 m/s resolution	NAC, imaging at 50 km/pixel	hours
		B. In situ vertical wind profile to 10–20 m/s resolution	USO (probe), 10 measurements per scale height	Probe to 5 bars
	A1. How does atmospheric		Vis/NIR, 1000 km/pixel	
		C. Resolved composition, disequilibrium species mapping (to P < 3 bars): CH ₄ , H ₂ S, H ₃ +, C ₂ H ₂ , C ₂ H ₆ ,	TIR, ~1000 km horizontal spatial resolution	
		etc., hydrogen ortho/para fraction to mixing ratio ±20%	MS (probe)	Probe to 5 bars, 10 bars preferred
		otol, nyarogon orano, para madaon to misang rado 22070	Ortho/para sensor (probe)	Probe to 5 bars
		D. Depth of atmospheric winds (gravity moments)		Polar and equatorial passes, distances of 1.1 R _u
Sa		A. Cloud tomography and aerosols	Vis/NIR imaging spectra at 500–1000 km/pixel	Repeated views of same features over timescales of hours
Atmospheres		A. Cloud tollography and aerosois	0 0	Repeated views of same features over minutes to hours
dso	A 2 M/hat is the 2D atmoonhagis		ASI (probe), 4 measurements per scale height	Probe to 5 bars
Atm	A2. What is the 3D atmospheric structure in the weather layer?	B. Vertical temperature profile to ±1K	Ortho/para sensor (probe)	Probe to 5 bars
	and the mounter tayou			Atmospheric occultations
		C. Global temperature variations in troposphere,	TIR, 500-1000 km/px mapping	Global coverage, repeated views
		stratosphere, thermosphere	Vis/NIR spectra at 500–1000 km/pixel	
		A. Noble gas (& isotopes of He, Xe) abundances to $\pm5\%$	MS (probe)	Probe to 5 bars
	Uranus form, and how did it evolve both thermally and	B. Elemental (& isotopes of H, C, S, N & O (stretch goal)) abundances, lower bounds on CH ₄ , H ₂ S, NH ₃ , H ₂ O, and the variation with depth	MS (probe)	Probe to 5 bars, 10 bars preferred
		C. Global distribution of atmospheric composition	Same as A1.C above	
			TIR, 1000 km/pixel	Repeat orbiter ~yearly to determine variability
			Vis/NIR spectra at 500-1000 km/pixel	Repeat ~yearly to determine variability
	I2. What is the bulk composition and its depth dependence?	A. Gravity field to at least J_8 , uncertainties on $J_2\text{-}J_6$	Radio Science + UltraStable Oscillator, gravity passes	
Interiors	layers or fuzzy core, and can this	A. Gravity field to at least J ₈ , uncertainties on J ₂ -J ₆	Same as I2.A above	Polar passes, distances of 1.1 $R_{\mbox{\tiny u}}$ require validation of safe passage inward of rings
重		B. Ring oscillations	NAC imaging of rings (<1 km/pix)	
			Radio Sci + UltraStable Oscillator, occultations	
	Uranus, does it rotate uniformly, and how deep are the winds?	A. Internal magnetic field structure	MAG, 0.1 to 20,000 nT, 1-second cadence	Many close passes
		B. Planet shape and gravity to J ₈	Radio Sci + UltraStable Oscillator, occultations	
		C. Gravity field to J ₈	Same as I2.A above	
tospheres	M1. What dynamo process produces Uranus's complex magnetic field?	A. Internal magnetic field structure	Same as I4.A above	Close passes
	M2. What are the plasma sources & dynamics of Uranus's magnetosphere and how does it interact with the solar wind?	variability)	•	Multiple passes
Maç	interact with Uranus's upper atmosphere and satellite	A. Energetic particle fluxes at satellite orbital ranges	Fields & Particles package	
		B. Plasma/energetic particle fluxes over Uranus polar regions	Fields & Particles package	Polar passes

Uranus Orbiter and Probe

	Science Objective	Measurement	Nominal Instrument	Mission Functional Requirement
		A. Cloud top zonal and 2D winds, waves to ~10 m/s resolution	NAC, imaging at 50 km/pixel	Repeated views of same features over timescales of minutes to hours
		B. In situ vertical wind profile to 10–20 m/s resolution	USO (probe), 10 measurements per scale height	Probe to 5 bars
	A1. How does atmospheric		Vis/NIR, 1000 km/pixel	
	circulation function, from interior to thermosphere, in an ice giant?	C. Resolved composition, disequilibrium species mapping (to P < 3 bars): CH ₄ , H ₂ S, H ₃ +, C ₂ H ₂ , C ₂ H ₆ ,	TIR, ~1000 km horizontal spatial resolution	
	to thermosphere, in an ice glant.	etc., hydrogen ortho/para fraction to mixing ratio ±20%	MS (probe)	Probe to 5 bars, 10 bars preferred
		oto, nyarogon orato, para maodon to minang rado === 70	Ortho/para sensor (probe)	Probe to 5 bars
			Radio Science, gravity passes	Polar and equatorial passes, distances of 1.1 R _u
Sa		A. Cloud tomography and aerosols	Vis/NIR imaging spectra at 500–1000 km/pixel	Repeated views of same features over timescales of hours
Atmospheres		A. Cloud tomography and aerosois	WAC or NAC imaging at 500–1000 km/pixel	Repeated views of same features over minutes to hours
dso	A 0 14/1 - 41 - 0D - 4 1 - 4		ASI (probe), 4 measurements per scale height	Probe to 5 bars
ŧ	A2. What is the 3D atmospheric structure in the weather layer?	B. Vertical temperature profile to ±1K	Ortho/para sensor (probe)	Probe to 5 bars
	Structure in the weather layer:	22 S22	Radio Sci + UltraStable Oscillator, occultations	Atmospheric occultations
		C. Global temperature variations in troposphere,	TIR, 500-1000 km/px mapping	Global coverage, repeated views
		stratosphere, thermosphere	Vis/NIR spectra at 500–1000 km/pixel	
	A3/l1. When, where, and how did Uranus form, and how did it evolve both thermally and	A. Noble gas (& isotopes of He, Xe) abundances to ± 5%	MS (probe)	Probe to 5 bars
		B. Elemental (& isotopes of H, C, S, N & O (stretch goal)) abundances, lower bounds on CH ₄ , H ₂ S, NH ₃ , H ₂ O, and the variation with depth	MS (probe)	Probe to 5 bars, 10 bars preferred
	spatially, including migration?	C. Global distribution of atmospheric composition	Same as A1.C above	
		D. Global energy balance (Bond albedo and thermal	TIR, 1000 km/pixel	Repeat orbiter ~yearly to determine variability
		emission) to 1%	Vis/NIR spectra at 500-1000 km/pixel	Repeat ~yearly to determine variability
	I2. What is the bulk composition and its depth dependence?	A. Gravity field to at least J ₈ , uncertainties on J ₂ -J ₆	Radio Science + UltraStable Oscillator, gravity passes	
eriors	I3. Does Uranus have discrete layers or fuzzy core, and can this be tied to its formation and tilt?	A. Gravity field to at least J ₈ , uncertainties on J ₂ -J ₆	Same as I2.A above	Polar passes, distances of 1.1 $R_{\mbox{\tiny u}}$ require validation of safe passage inward of rings
<u>a</u>		B. Ring oscillations	NAC imaging of rings (<1 km/pix)	
			Radio Sci + UltraStable Oscillator, occultations	
	I4. What is the true rotation rate of Uranus, does it rotate uniformly, and how deep are the winds?	A. Internal magnetic field structure	MAG, 0.1 to 20,000 nT, 1-second cadence	Many close passes
		B. Planet shape and gravity to J ₈	Radio Sci + UltraStable Oscillator, occultations	
		C. Gravity field to J ₈	Same as I2.A above	
	M1. What dynamo process produces Uranus's complex magnetic field?	A. Internal magnetic field structure	Same as I4.A above	Close passes
netosphere	M2. What are the plasma sources & dynamics of Uranus's magnetosphere and how does it interact with the solar wind?	A. Particles & fields over range of space (distance, longitude, latitude, local time) and time (spin, solar wind variability)	Fields & Particles package	Multiple passes
Maç	interact with Uranus's upper atmosphere and satellite	A. Energetic particle fluxes at satellite orbital ranges	Fields & Particles package	
		B. Plasma/energetic particle fluxes over Uranus polar regions	Fields & Particles package	Polar passes

Strategic Supporting Activities (OWL)

- What processes influence the structure, evolution, and dynamics of giant planet interiors?
 - Laboratory measurements and numerical simulations of high-pressure, high temperature equations of state, chemical reaction rates, and transport properties (i.e., viscosity, thermal and electrical conductivity, diffusion coefficients)
 - Numerical and analytical models of dynamic processes in the atmosphere, interior and magnetosphere of giant planets
 - Continued data analysis from past missions and development of new observational techniques (e.g., ring seismology, Doppler imaging)
 - Long-term monitoring of atmospheric dynamics, waves and oscillations, auroras, and impacts
 - Create a census of a large population of young planets recently formed, of the composition of giant exoplanet atmospheres, of magnetospheric activity in exoplanets, and of mass-radius relations of sub-Neptunes with radio and telescopic observations