

Matthew Beasley (CU-Boulder),

OPTICAL SYSTEMS FOR THE UV

OUTLINE

Bandpasses and technology

Consequences to optical designs

Where are the improvements in each bandpass

UV (NOT AVAILABLE FROM GROUND)

- <550 Å requires either grazing incidence or muiltilayers over small bandpass
- × EUV: 550 900 Å
- × DUV: 900 1150 Å
- × FUV: 1150 2000 Å
- × NUV: 2000 3200 Å

EUV 550 - 900 Å

- EUV currently restricted to in-situ planetary measurements
 - + Only a few astrophysical targets in this bandpass
- ★ Architecture completely determined by low reflectivity (~30% broadband SiC, B₄C)
- Missions in this bandpass typically look at bright targets (can be small)
- Thin film metal films are only transmitting materials

DUV 900 - 1150 Å

- ★ 900 1000 Å throughput requires SiC or B₄C (30% reflectivity)
- * 1000 1150 Å can use LiF/Al for 60% (with good efficiency through optical wavelengths)
- Architecture determined by poor reflectivity
- Thin film metals are only transmitting materials, no lenses

INSTRUMENT FOR DUV (900 - 1000 Å)

DUV INSTRUMENT (1035 Å)

WHY DUV? WHY WORK SO HARD?

of ground state transitions as function of wavelength

FUV 1150 - 2000 Å

- MgF₂/Al best choice for broadband operation
- × 80% reflection allows three optic systems
- Transmitting optics (i.e., lenses) work, albiet poorly
- Good filters would be highly desirable scientifically

HUBBLE FUV

FUV INSTRUMENTS (1000 - 1600 Å)

NUV 2000 - 3200 Å

- Excellent efficiency >85% from high quality MgF₂, mirror coatings not driver for architecture
- Sood optical quality, decreasing scatter issues, low airglow
- Detectors have room for improvement
- Conventional filters leave something to be desired, but work

NUV INSTRUMENT

BROADBAND COATINGS

- Bare metal has been used (iridium, osmium), but low (~15%) reflectivity compromises performance
- Evaporated MgF₂/Al, LiF/Al, SiC, B₄C.
 - + Represent advancements over bare high-Z metals in the UV (30 60%)

CURRENT COATINGS

- However, the MgF₂/Al and LiF/Al are simply to protect the native aluminum reflectivity and suffer short wave cutoff due to the crystal becoming opaque.
- Improvements on the way

OPTICAL FABRICATION ISSUES

- Diffraction limit costly to achieve with NUV/FUV optics due to testing issues
- * Holographic diffraction gratings limited in figure quality, typically have little impact on systems

SCATTER

- × Highly polished glass (< 10 Å rms) excellent
 - + New metal optics acceptable in DUV (nickel clad aluminum)
- Gratings
 - + Holographic in photoresist
 - × VERY LOW (< 5x10⁻⁷)
 - + Holographic Ion Etched
 - \times Low (< 1 x 10⁻⁵)
 - + Ruled (via diamond)
 - × Can be high
 - + Exotics
 - × Silicon Lithography probably low
 - × Photonic material low, may have other effects

FILTERS (AND DICHROICS)

- EUV thin film metal filters and multi-layer reflective systems provide modest filter capacity
- ➤ DUV thin film filters have been used. Nothing approaching narrowband (R~10 is the best I'm aware of)
- FUV conventional filters becoming available, but throughput is low and resolution is modest (compared to optical wavelengths), reflection filters better
- NUV Selections of materials is improving, better filters, reflective filters still competitive

DETECTORS

- EUV detectors (silicon/MCP based) work well, DQE is high (>60% dropping as wavelengths get long, especially for silicon)
- DUV MCPs (or other photocathode based) have good DQE (~50%), Silicon ~30%
- FUV MCPs (or other photocathode) best at short wavelengths, Silicon potentially better at long wavelengths
- NUV silicon devices currently best, MCPs with GaN may be competitive

CONTAMINATION CONTROL

- Increasingly strict the shorter the wavelength due to hydrocarbon absorption of light
- Can be a cost driver for LiF/Al optics
 - + Will result in cost increases over the entire mission for any UV instrument

AIRGLOW

- EUV, DUV, FUV bright geocoronal airglow force some sort of control into instrument design
 - + In situ planetary missions consider the airglow "science"
- NUV airlglow not a significant issue

IMPROVEMENT

- DUV has substantial (and more profound increases in capability) available at low cost with a straightforward development path
- Other UV bands have improvement paths
 - Detectors are being worked on (several groups here)
 - + Filters, etc

CHESS ROCKET PAYLOAD (DUV/FUV)

These echelle systems are roughly equivalent (resolution, bandpass). The design on the left is a BETTER design.

DUV SYSTEMS

UPGRADE PRIORITIES

- × EUV/DUV
 - Reflective coatings
 - 2. Gratings
 - 3. Detectors

- × FUV
 - Gratings/
 Filters
 - Detectors
 - 3. Reflective Coatings

× NUV

- Detectors
- 2. Gratings/Filters
- 3. Reflective Coatings

ASTROPHYSICAL MISSION CONCEPTS

- Three-mirror anastigmat architecture good candidate for UVOIR instrument
- Unless operations below 1150 Å required, three mirrors not a significant impact for FUV
- DUV systems would require more exotic designs to integrate UV/ Optical (and performance compromises)
- UV-only mission could make these trades