From Protoplanetary Disks to Exoplanetary Atmospheres

Kevin France
University of Colorado

FROM PROTOPLANETARY DISKS TO EXOPLANET ATMOSPHERES:

TELLING THE STORY OF EXOPLANET EVOLUTION WITH UV SPECTROSCOPY

Kevin France

University of Colorado

A. Roberge et al. 2009 – Astro2010 White Paper

A. Roberge et al. 2009 – Astro2010 White Paper

- H₂ makes up 99% of the gas mass in protoplanetary disks
- Very hard from the ground, may only be done with JWST

- H₂ makes up 99% of the gas mass in protoplanetary disks
- Very hard from the ground, may only be done with JWST
- CO, 2nd most abundant molecule:
 - Chemistry
 - Disk Structure

Solar-system analogs to Brown Dwarf systems

Solar-system analogs to Brown Dwarf systems

Solar-system analogs to Brown Dwarf systems

Solar-system analogs to Brown Dwarf systems

SO PR Photo 26a/04 (10 September 2004

Solar-system analogs to Brown Dwarf systems

NACO Image of the Brown Dwarf Object 2M1207 and GPCC

•Transit observations necessary for the characterization of exoplanet atmospheres

Exoplanet Atmospheres: Gas Giants

- •Transit observations necessary for the characterization of exoplanet atmospheres
- Resonance lines in UV best tracers of atomic gas and mass loss from "hot Jupiters"

Exoplanet Atmospheres: A Comet Tale

- •Characterization of H, C, O, Si, Fe
- Do "hot Jupiters" evaporate?
- Migration ← Gas Disks

UV Spectroscopy on Late Night with Jimmy Fallon

 Many habitable planet candidates will exist by mid-decade

 Many habitable planet candidates will exist by mid-decade

- Many habitable planet candidates will exist by mid-decade
- •The UV radiation fields of their host stars control the thermal and photochemical structure of their atmospheres

- Many habitable planet candidates will exist by mid-decade
- The UV radiation fields of their host stars control the thermal and photochemical structure of their atmospheres
- But we know relatively little about chromospheric/coronal structure of average

low-mass (M and late K) stars

From Protoplanetary Disks to Exoplanetary Atmospheres

Factor of ~10 sensitivity

w/ Flux Dynamic Range w/ Lower Background Equiv Flux

- $R \ge 50,000, 1000 \le \lambda \le 1750 \text{Å}$
- Wavelength solutions stable to
 - $<\frac{1}{2}$ resolution element
 - Photon-counting detector

From Protoplanetary Disks to Exoplanetary Atmospheres

- Protoplanetary gas disks
- Formation of planetismals
 - Transit spectroscopy of Jovian atmospheres
- Incident UV fields for exo-Earths

Kevin France
University of Colorado