PureB silicon photodiode detectors for DUV/VUV/EUV light and low-energy electrons

Lis K. Nanver

Delft Institute of Microsystems and Nanoelectronics – DIMES Delft University of Technology

30th August, 2011

Acknowledgements

 PhD students: Lei Shi, Gianpaolo Lorito, Agata Šakič, Francesco Sarubbi, Negin Golshani, Vahid Mohammadi, Lin Qi
Postdocs: Caroline Mok, Jaber Derakhshahdeh
Process technologists: Tom Scholtes, Wiebe de Boer, Silvana Milosalvjevic, Wim Wien, Carel Heerkens

ASML Lithography: Stoyan Nihtianov, Koen Kivits, René de Bruin FEI Company: Gerard van Veen, Kees Kooijmanns, Patrick Vogelsang PTB Berlin: Frank Scholze, Christian Lauber, Andreas Gottwald, Ulrich Kroth

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p+n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p⁺n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Pure boron CVD technology

Pure boron deposition from B_2H_6 gas in an AMSI Epsilon One Si/SiGe epitaxial CVD reactor

700°C deposition Not visible on the

HRTEM: a few nm B-doping of the c-Si below the B_xSi_v α -B ~ 4 nm

 $B_x Si_v \sim 1 \text{ nm}$

Crystalline Si substrate

Constant boron deposition rate

 B_2H_6 flow rate: 490 sccm

TUDelft

6

Other boron deposition properties

Under the right conditions:

• high selectivity to native-oxide-free Si surfaces

 α -Si

Uniform coverage

• uniform depositions for temperatures: 500 °C – 700 °C

B-layer

• isotropic deposition on Si

SiO,

50 nm

Isotropic deposition

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of p+n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Doping from pure boron layers

Doping from pure boron layers

5 s exposure: ~ 1 monolayer = 6.78×10^{14} cm⁻²

10 min exposure: ~ 10^{17} cm⁻²

B-layer removal

After B-layer removal: ~ 10^{14} cm⁻² boron concentration left This exceeds the solid solubility \Rightarrow some B_xSi_y

Sheet resistance measurements

B-layer resistivity very high: 10⁴ ohm-cm (semi-metal) Doping of Si dominates sheet resistance **TUDelft** 12 **Post-processing for reduction of series resistance**

in-situ thermal annealing and/or selective epitaxial Si/SiGe growth:

13

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p⁺n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Enhanced diffusion effects

No real evidence of transient or boron enhanced diffusion has been found

Epitaxially-grown boron marker before and after PureB-deposition:

difference within experimental uncertainty

Electrical test structures

(1) p⁺n diodes n-doping ~ 10^{17} cm⁻³

(2) pnp bipolar transistorsemitter = B-layer

B-layer deposited in contact window, metallized immediately with Al/Si(1%)

TUDelft

16

p⁺n forward diode characteristics

Same behaviour at both temperatures:

- ideal characteristics
- saturation current decreases with deposition time
- series resistance first decreases and then increases

p⁺n reverse diode characteristics

High electric field at perimeter lowers breakdown voltage

Use guard ring, but not seen for low substrate doping

18

TUDelft

pnp transistor characteristics

Base current level decreases with deposition time

1 min attractive:

- current gain comparable to conventional implanted-emitter pnp
- series resistance low

TUDelft ¹⁹

pnp transistor characteristics

The B-layer suppresses the injection of electrons from the substrate \Rightarrow B-layer thickness determines the current gain Sarubbi, IEEE-TED 2010

Delft

20

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p+n diodes
- Application as photodetectors for low-penetrationdepth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p+n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Lithography roadmap down to 10 nm features

EUV: supports 22 nm and 16 nm nodes with a single projection system

Challenging DUV/VUV/EUV detection

Challenging DUV/VUV/EUV detection

Ideal spectral responsivity of Si-based photodetectors

Optical performance

EUV optical performance

26

Measured spectral responsivity of EUV PureB diodes with a 2.5 min Bdeposition compared with a commercial n^+p photodiode and the theoretically attainable values for an ideal Si-based photodetector.

Optical performance

DUV/VUV optical performance

Measured responsivity of PureB-diodes in DUV/VUV spectral range compared with other state-of-the-art photodetectors.

Performance stability

EUV responsivity degradation

shape of the EUV spot (irradiance in the high power region is 3 W/cm² [24]) and the EUV-induced carbon contamination layer.

Ratio of measured EUV spectral responsivity after/before intense EUV irradiation (220 kJ/cm²), compared to the calculated ratio of responsivity based on the same diode with/without a 20 nm carbon layer

Performance stability

DUV/VUV responsivity degradation

 \sim 4 nm silicon oxide layer was measured on the diode surface

Performance stability

DUV/VUV responsivity degradation

Oxide-free boron surface

High Stability

Robustness

H* cleaning

Filament enhanced H* cleaning setup

Plasma-generated H* cleaning setup

Micro-image of the EUV contaminated sample before / after 2 hours' H* cleaning.

31

Crucial throughput requirement: 100 wafers per hour

Mirrors not lenses

Energy sensor

EUV source: the most difficult challenge

2 wafer stages

ASML

TIS (transmission imaging sensor)

Spot/slit sensor

3 types of detectors developed by DIMES

EUV Product Roadmap

2006

ADT Resolution = 32 nm NA = 0.25, σ = 0.5 Overlay < 7 nm Throughput 5 WPH @ 5mJ/cm² ~8W

Main improvements

- 1) New EUV platform :NXE 2) Improved low flare optics
- 3) New high σ illuminator
- 4) New high power LPP source
- 5) Dual stages

2010

NXE:3100

Resolution = 27 nm NA = 0.25, σ = 0.8 Overlay < 4.5 nm Throughput 60 WPH @ 10mJ/cm2 >100W

Main improvements

1) New high NA 6 mirror lens

- 2) New high efficiency illuminator
- Off-Axis illumination option
- Source power increase
- 5) Reduced footprint

2012

NXE:3300B

Resolution = 22 nm NA = 0.32, $\sigma = 0.2-0.9$ Overlay < 3.5 nm Throughput 125 WPH @ 15mJ/cm2 >350W

2013

NXE:3350C

Resolution = 16* nm NA = 0.32, OAI Overlay < 3 nm Throughput 150 WPH @ 15mJ/cm2 >550W

Platform enhancements 1) Source power increase

* Requires <7nm resist diffusion length

Detector elements: photodiodes

Good manufacturability

- IC processing compatibility
- flexibility

temperature sensors

absorber layer stacks

different filter layer stacks

5 different types of alignment marks

two-sided contacting

excruciating electrical, optical and mechanical specifications

Outline

- Introduction
- Pure boron CVD technology
- Doping from pure boron layers
- Electrical properties of PureB p+n diodes
- Application as photodetectors for low-penetration-depth radiation and charged particles :
 - VUV, DUV, EUV
 - low-energy electrons
- Conclusions

Low-Energy Electron Detection

Challenges: low range in Si

Device fabrication

Device fabrication

Relative Electron Signal Gain

 $G_{R}(E_{beam}) = \frac{I_{ph} / I_{beam}}{(E_{beam} / e_{0})(1 - \eta)} = \frac{G_{PH}}{G_{TH}}$ $G_{R} = 0 \longrightarrow I_{ph} = 0$ $G_{R} = 1 \longrightarrow G_{PH} = G_{TH}$

State-of-art commercial detectors:

- vCD: low Voltage high Contrast Detector
- BSE: Backscattered-electron detector

FEI electron detectors

- Special requirements: very low capacitance low resistance many separated detector segments through-wafer holes
- Solutions: low doped, high-quality, 40 µm thick epi-layers special metal grid processing through-wafer deep dry etching

Example of imaging capability (FEI ASB Magellan SEM)

SEM images of pollen taken with B-layer detectors

Sakic, IEDM 2010

Future processes

Selective Ge epitaxy on Si

- Unique feature: Large islands possible with sub-300nm transition at 700°C
- Uniform Ge surface compatible with CMOS planar processing

43

Ge-dots embedded in Si: defect-free

A μ -Raman strain measurement in the silicon above an embedded Ge quantum-dot [2]. Huandra, Nanoletters 2011

The first PureB application:

high-Q high-linearity varactor circuits made in silicon-on-glass technology

SOG varactor diodes

True Two-sided contacting: ideal 1-D behavior eliminate parasitics

Diodes: low leakage, ultrashallow, made at low temperature