

Photon detectors: GaN-based device overview

F. Shadi Shahedipour-Sandvik
College of Nanoscale Science and Engineering
UAlbany-SUNY

KISS Workshop: UV Instrumentation Technology

Detectors for UV Astronomy

UV detectors for Astronomy applications fall into the categories of:Photocathodes (zero read noise)

•Solid State Detectors (may become zero read noise)

Superconducting devices that operator at approximately 100 mK

UV detector Requirement vary depending on:

•Source strength (long integrations favor zero read-noise)

•High ratio of in-band to out-of-band requirement (UV to visible)

•High speed (>60Hz) readout

Radiation hardness

Cs GaN based Photocathode

Cs GaN photocathodes have been demonstrated. The issue with these devices is the use of Cs

Cs GaN photocathode

- •30% QE @200 nm (Shahedipour et al. JQE, 2002)
- •70% QE (Sigmund et al. 2006)
- •2011: over 70% reported

Our objective: Cs-free GaN PC

- •Lowest emission threshold at 4.1 eV for a Cs-free GaN photocathode via bandgap engineering and interface/doping modification
- •Presence of polarization charges may play a role in increasing the threshold energy

College of Nanoscale Science & Engineerings-free Gan/Algan based PC: energy band UNIVERSITY AT ALBANY State University of New York

- ENEA demonstrated
- •Trade-off between emission threshold and QE for these preliminary devices

pin/APD AIGaN based SSD

- Room temperature operation
- Radiaton hardness
- •The ability to accommondate single pixel count rates at as high as 1kHz
- •Negligible response at wavelength longer than 350nm
- •Have 70% QE over a long wavelength region (e.g. below 350nm to the substrate cut off e.g. 150nm for sapphire))
- Bandgap engineering allows formation of solar-blind SSD
- •The most suitable candidate when dominant selection criteria are mass and volume.
- •Direct growth on Si possible

GaN pin/APD

	1/	T	D 2	De		
Group	Materi	Type	Device	D*		
	al/subs		area	(cmHza		
	trate		(μm^2)	$^{5}W^{-1}$)		
NWU	GaN	Back-	Variou			
[34]	sapphi	PIN	s 225 ~			
	re		2025			
NWU	GaN	Back-	225			
[35]	sapphi	SAM				
	re					
CAS	GaN	PIN	31416			
[36]	sapphi					
21	re					
Gatech	GaN	PIN	7854			
[37]	GaN					
[01]	Carv					
NCKU	GaN/s	MSM		2.67 x		
[23,	apphir	.,,,,,,,,		10 ¹⁰		
38]	e			10		
LU	GaN/s	MIS	17671			
[39]	apphir	1411.5	17071			
[22]	e					
NCKU	GaN/s	MSM	11400			
[23]	apphir	11113111	11400			
[20]	e					
Aubur	GaN	Schott				
n [40]	GaN	ky	-	-		
n [40]	Gaix	ку				
Bilken	A10.4G	Schott	1257	1.4 x		
t [24]	aN/sap		1201	10 ¹⁴ X		
1 [24]		ky		10		
NIT	phire A1InN/	Schott	17671			
			1/6/1	-		
[41]	sapphi	ky				
	re		40 40 5			
STU	GaN/s	Shcott	196350			
[42]	apphir	ky				
	e					

Group	Materi	Type	Device	D^{*I}	I_d^2	R_{λ}^{3}	UVR	M^{5}	SPDE(
	al/subs		area	$(cmHz^{a})$	(A/cm^2)	(A/W)	R^4		%)6 &
	trate		(μm^2)	$^{5}W^{-1}$))				DCP^7
Gatech	GaN	PIN	707		7n@-			1000	
[26]	GaN				5 V				
NCU	GaN	PIN		1.7 x		0.11 @	1200		
[27]	sapphi			10^{13}		365 nm,			
	re					0 V			
NWU	GaN	Back-	Various			0.082 @		5700	20%
[28,	sapphi	PIN ⁸	225 ~			361 nm,			
29]	re		14063			0 V			
Gatech	GaN	PIN	4536		15n @			1000	
[30]	GaN				-20 V			0	
Gatech	$A1_{0.05}$	PIN	707		141n			50	
[31]	GaN				@ -20				
	GaN				V				
Gatech	GaN	PIN	4536		100n			3000	
[32]	GaN				@ -45			0	
					V				
Bilken	GaN	PIN	31416		64n @	0.23 @	6700		
t [22]	sapphi				-5 V	356 nm,			
	re					-5 V			
NWU	GaN	Back-	625		3.84μ	0.094 @		5100	
[33]	sapphi	SAM ⁹			@ -40	360 nm,		0	
	re				V	~ -70 V			

⁹ Back-illuminated separate absorption and multiplication photodiode

Effective detectivity

² Reverse-biased dark current density ³ The peak value of responsivity ⁴ Ultraviolet-visible rejection ratio

⁵ Linear-mode avalanche gain

⁶ Single photon detection efficiency

Dark count possibility
 Back-illuminated p-i-n photodiode

GaN p-i-n photodiodes fabricated at JPL, low reverse leakage current, 50% peak QE for a backilluminated GaN p-i-n.

Spectral QE plot for GaN p-i-n array (left). A diode array packaged in a standard 40 pin package for characterization (right).

320x256 array of individual 25 µm PIN diodes, a high-resolution image obtained from a hybridized part produced at JPL.

AlGaN Based III-Nitride Layered Barrier Hypersoectral Detector

AVIRIS CONCEPT

Novel dynamically tunable HS detector

Internal photoemission measurement (IPE)

gate voltage (V)

Tunability rate

Challenges

TEM micrograph for GaN on Si showing dislocations formed because of lattice and thermal mismatch

Reliability in Electronic Devices

Droop in Emitters

Dislocations: Act as non-radiative centre and path for leakage current degrading optical and electrical characteristic of devices

QCSE: Electric field in quantum wells spatially e⁻ and h⁺ which causes decrease in recombination efficiency

A few solutions

Nano(Al)GaN: dislocation defect reduction

GaN/Si: One order of magnitude in defect reduction after

Implanted (2×10¹⁶/cm², 60 keV)

Homo/heteroepitaxy on Bulk GaN (AIN) substrates