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Gravitational waves landscape

[credits: A. Sesana]

“Detecting GWs” Stanislav (Stas) Babak 16-19 Jan. 2018, KISS 3 / 45



LIGO-VIRGO DA basics LISA GW sources in LISA band LISA data analysis

Detection of GW with LIGO

[Image credit: LIGO/B. Farr]
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GW observatories on the ground

The network of the GW observatories on the ground.
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Laser interferometers as GW detector

Over-simplified scheme of LIGO interferometer.

Sensitivity during O1/O2
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Matched filtering
We are searching for a signal of a specific shape buried in the noise:
matched filtering.

time
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Matched filtering
Assume that the data d(t) consists of the noise n(t) and a signal
s(t): d(t) = n(t) + s(t).
The matched filtering is optimal for the signal of a known shape. It
is done in frequency domain: d̃(f) = FFT (d(t)).
The matched filtering takes into account that the sensitivity of the
detector is not the same across the frequency band:

ρ = 4<
∫ ∞

0
df
d̃(f)h̃∗(f)
Sn(f)

Here we search for a signal of a specific shape h̃(f) (or h(t)). Note
that h(t) and the signal s(t) might not be identical, but need to be
as close as possible.
If we average over the noise realizations and assume that the
template and the signal are identical:

ρ = 4<
∫ ∞

0
df
s̃(f)s̃∗(f)
Sn(f) = SNR2
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Matched filtering: GW150914

H1 L1

[LOSC: https://losc.ligo.org/tutorials/]
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Matched filtering and parameter estimation

noise = data - signal ~θ(1)

~θ(2)

~θ(3)

credits M. Vallisneri

noise = data - signal
p(signal parameters)
= p(noise residuals)

~θ(1)

~θ(2)

~θ(3)

~θML(2)

credits M. Vallisneri
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Matched filtering and parameter estimation:
GW150914

H1 L1

[LOSC: https://losc.ligo.org/tutorials/]
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Parameter estimation
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Inferred parameters of binary systems: masses

10 20 30 40 50 60
m1(M¯)

0

10

20

30

40

m
2(

M
¯

)

GW150914

LVT151012

GW151226

GW170104

Average
Effective Precession
Full Precession

[LSC+Virgo PRL (2017]
“Detecting GWs” Stanislav (Stas) Babak 16-19 Jan. 2018, KISS 13 / 45



LIGO-VIRGO DA basics LISA GW sources in LISA band LISA data analysis

Inferred parameters of binary systems: spins
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Correlations and degeneracies
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Waveform modeling
The GW signal from binary system can be conventionally split in
“inspiral”, “merger” and “ringdown”

The most accurate description of GW signal is given by numerical
solution of GR for two body problem. Requires large computational

resources and long time: short waveforms (∼ 20 cycles). Simulations
are not very reliable for large spins and large mass ratio.
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GW signals in frequency domain

Low mass systems: we see mainly inspiral. High mass binaries we see
mainly merger-rindgdown.
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Waveform modeling
Post-Newtonian (PN) approximation: slow motion approximation

(v/c << 1)

Perturbative theory: small mass ratio (m/M � 1)

Effective-One-Body approach: combination of PN, Perturbative approach

and NR

“Detecting GWs” Stanislav (Stas) Babak 16-19 Jan. 2018, KISS 18 / 45



LIGO-VIRGO DA basics LISA GW sources in LISA band LISA data analysis

Waveform modeling: Effective-One-Body and
Phenomenological Model

EOB: mapping two body problem to a test mass moving in effective perturbed Kerr spacetime

Real problem Effective problem
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[Babak+ PRD, 2016]

IMRPhenom: phenomenological approach uses PN for inspiral and fit for the late IMR

[Khan+ PRD, 2016]
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Non-stationary noise

The noise is non-stationary.
There are various
artifacts (glitches):
produce high SNR
Cross-detector
consistency eliminates
most
Some are understood,
some not
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Non-stationary noise

We check the consistency of the candidate event with what we expect
from the GW signal in time-frequency.

[credits: I. Harry]
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Non-stationary noise
The most unfortunate case is the glitch on top of the GW signal: binary
NS GW signals GW170817.
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LISA: laser interferometer in space.
LISA is a future space based GW observatory, to be launched around
2034.

LISA Pathfinder: very successful demonstration of LISA technologies.

Earth

Sun
1 AU (150 million km)

19 – 23°
60°
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LISA vs ground based ifo: what are the common
problems

Modelling GW signal from BH binaries: the signal is total mass
invariant (t/M , fM )
Continuous GW signals: single deformed NS in LIGO band, white
dwarf binaries in LISA band
Matched filtering: the main technique to search and estimate
parameters

Non-stationary noise:
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LISA vs ground based ifo: what is different

Data size is small: (does not require large data storage, but the data products

could be significant)

Data is dominated by signals: (requires global fit→ multi- (trans)

dimensional fit)

TDI (time delay interferometry): (the main source of noise is the laser

frequency noise in measuring δν/ν, requires time delayed combination of measurements

to cancel this noise)

Non-trivial response function: (many signal have λGW ∼ L, it requires

computation of response beyond the long wavelength approximation)

GW signals are long lived: (signals from the same and different kind of sources

are present simultaneously in the data, noise fluctuations are significant)

Some GW signals are strong: (requirement on modelling and hierarchy of the

search)
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LISA’ operating concept
LISA uses transponding laser interferometry.

Transponding  
interferometry

Free-falling  
test masses

S/c an isolation  
shield (µN jets)

Science data rate  
low, 100bps
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TDI: unequal arm problem.

The laser frequency noise emitted at s/c 1 travels to the s/c 2, 3. We
need to take measurements after the light has traveled equal optical
path in different directions and subtract them: noise cancels exactly,
but not the GW signal.
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Sources: MBH binaries
We expect that all galaxies host MBH in their nuclei. (Milky Way,
S-stars: 4× 106M� BH)
We know that galaxies merge: formation of MBH binaries
We need to bring pair of MBHs close together (interaction with
gas, stars)
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Sources: MBH binaries

The MBHs are formed from initial seeds (large or small) by accreting
gas and by mergers

[credits: Gabriella De Lucia, Baumgarte and Shapiro]
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Main features of the signal from MBH binaries
Some signals are very strong and can be seen by eye:

We use matched filtering: need to know the model for GW signal
very well
The signal depends (in general) on 15 parameter (might be
eccentric)
Duration of the signal: from few weeks to almost a year (source
and detector dependent)
We will be able to detect precession and subdominant modes.
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Estimating parameters of binary systems
We are the most sensitive to the phase of GW signal: contains info about masses, spins of
individual objects (δM/M ∼ 0.001− 0.1, δχ ∼ 0.01− 0.1, δθ1,2 ∼ 1− 10◦)
Amplitude contains information about spin orientation, distance to the binary, polarization,
sky location (but need to disentangle)

Sky position: modulation of the amplitude (angular sensitivity as a function of time) and
doppler modulation of the phase
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MBHBs: Event rate
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Extreme mass ratio inspirals (EMRIs)

MBH in galactic nuclei is surrounded by a dense cusp of stars
A compact object (NS, BH, WD) could be thrown toward MBH as a
result of N-body interaction
A compact object might be captured on a very eccentric orbit and
slowly spirals toward central hole until the final plunge
Extreme mass ratio inspiral (EMRI) - typical mass ratio 10−7− 10−5

Compact object spends ∼ 106 orbits close the central MBH in the
LISA band
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EMRIs waveform

The GW signal from EMRIs is rich in structure: three-periodic
motion with slowly evolving frequencies
"Holiodesy" – mapping spacetime of the central object: good for
testing GR.
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We can detect EMRIs down to SNR∼ 20 (MLDC)
Rich structure allows ultra-precise parameter estimation, including
measuring the multipole moments of a central massive object
(holiodesy)
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EMRIs event rate

The expected event rate is very uncertain. We have used several
models for MBHs distribution and for the compact objects (10 or 30
M�). Green and red curves are bounding the event rate for each
model.
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Galactic white dwarf binaries
LISA will observe ∼ 107 Galactic WD binaries, only ∼ 104 are
resolvable others form GW stochastic signal
GW signal is almost monochromatic with slow evolution of freq.
(GW radiation and mass transfer)
Verification binaries (GAIA, LSST)
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LISA data analysis
The data is signal dominated: many signal overlap in time and in
frequency
The problem is to detect and characterize as many signals as
possible: LISA data challenge has restarted:
https://lisa-ldc.lal.in2p3.fr/home

[white paper arXiv:1305.5720]
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Data Analysis: matched filtering

Matched filtering has proven to be the way to accurately estimate
parameters of the signals and to disentangle the GW signals. In

LISA we will need to construct a multi-source/signal template allowing variable number of

signals and glitches

Stochastic methods are the most successful data analysis
search methods. (as compared to the grid-based search adopted in LIGO-VIRGO

data analysis)

The stochastic methods: Parallel tempering Markov Chain Monte
Carlo, Reverse Jump Markov Chain Monte Carlo, Nested
sampling, Multimodal Genetic Algorithm
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Past Mock LISA Data Challenge
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Multimodality of the likelihood
The main problems of LISA is multidimensionality and multimodality.//
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Multimodality of the likelihood

The main problems of LISA is multidimensionality and multimodality.

MBHBs

EMRI(s)

Source Group SNR δM
M

δµ
µ

δν0
ν0

δe0 δ|S| δλSL
λSL

δspin δsky δD
D

(SNRtrue) ×10−3 ×10−3 ×10−5 ×10−3 ×10−3 ×10−3 (deg) (deg)
EMRI-3 MTAPCIOA 19.598 1.62 0.38 −0.10 −0.35 −0.94 −3.0 5.0 3.0−0.04
(19.507) BabakGair 21.392 1.77 1.01 1.95 −1.2 −0.68 −2.3 116 4.5 0.13

BabakGair 21.364 2.26 1.88 2.71 −2.0 −0.69 −2.5 65 6.1 0.14
BabakGair 21.362 1.51 1.01 2.09 −1.3 −0.50 −1.7 7.6 6.2 0.14
EtfAG — 54.0 4.88 −7375 26 17 — — 32 0.83
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Constrains on the GW signal modelling

Stochastic error: noise pushes the maximum likelihood away from
the true parameters. Scales with SNR (∼ 1/SNR).
Systematic errors: error in modelling GW signal. For loud signals
could become a dominant source of error.
MBHB signal: requires complete (IMR) model with eccentricity,
arbitrary spins, subdominant modes
EMRI signal: requires going beyond the first order in perturbation
theory to model long signal (∼ year)
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Summary

GW astronomy on the ground

LIGO and VIRGO have detected GWs from handful of
BBHs and one BNS
GW detectors undergo upgrade: start operating with
improved sensitivity in O3
Expect more signals (could be 1/week), looking
forward to detecting more BNSs and BH-NS
LIGO-India and KAGRA: extending the network in the
near future (better sky coverage, localization, ...)
Study the population of GW sources. Combine events
to have stringent constrains on deviations from GR
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Summary
GW astronomy in space

LISA is very strong now! LPF and GWs with LIGO: full
speed ahead with space-based project.
Data will be signal dominated, requires new/improved
methods for analysing the data.
Stringent requirements on the models of GW signals
from binary systems
LISA: amazing astrophysical and fundamental physics
laboratory
LISA data challenge:
https://lisa-ldc.lal.in2p3.fr/home

LISA symposium:
http://ciera.northwestern.edu/LISA12.php
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