

Mars ISRU: State-of-the-Art and System Level Considerations

June 28, 2016

Presentation to Keck Institute of Space Science (KISS) "Addressing Mars ISRU Challenge"

> G. B. Sanders NASA Johnson Space Center, Houston, TX,

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

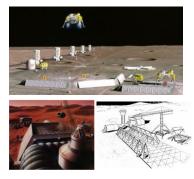
Resource Assessment (Prospecting)

Assessment of physical, mineral/ chemical, and volatile/ water resources, terrain, geology, and environment

Resource Acquisition

Involves extraction, excavation, transfer, and preparation before processing

Resource Processing/ Consumable Production


Processing resources into products with immediate use or as feedstock for construction and/or manufacturing ➤ Propellants, life support gases, fuel cell reactants, etc.

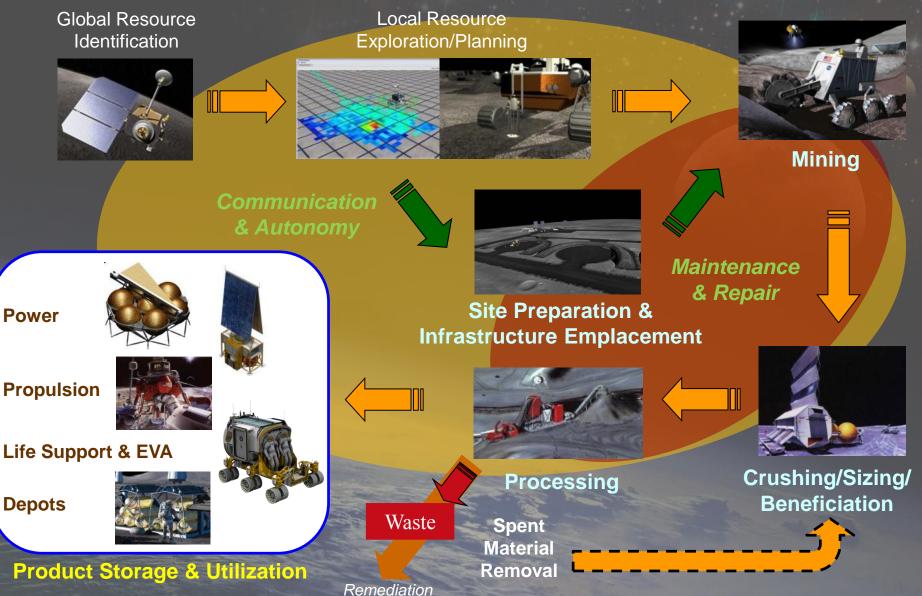
In Situ Manufacturing

Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources

In Situ Construction

Civil engineering, infrastructure emplacement and structure construction using materials produced from in situ resources ➤ Radiation shields, landing pads, roads, berms, habitats, etc.

In Situ Energy


Generation and storage of electrical, thermal, and chemical energy with in situ derived materials

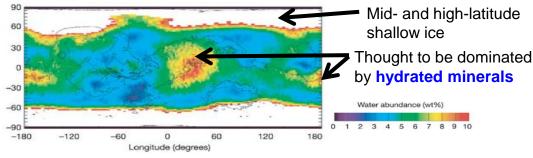
Solar arrays, thermal wadis, chemical batteries, etc.

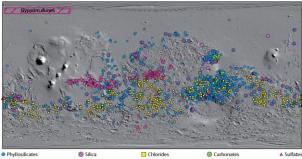
- 'ISRU' is a capability involving multiple elements to achieve final products (mobility, product storage and delivery, power, crew and/or robotic maintenance, etc.)
- 'ISRU' does not exist on its own. By definition it must connect and tie to users/customers of ISRU products and services

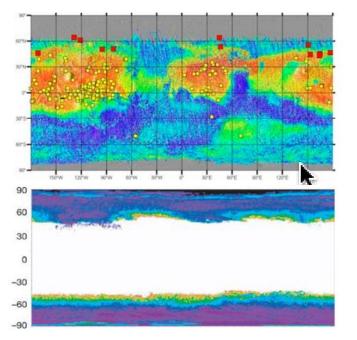
Space 'Mining' Cycle: *Prospect to Product*

Resource Assessment (Prospecting)

Mars Resources

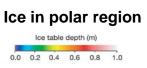

Atmosphere


- Pressure: 6 to 10 torr (~0.08 to 0.1 psi);
- Temperature: +35 °C to -125 °C


Soil/Minerals

Resource	Potential Mineral Source
Water, Hydration/ Hydroxyl	Gypsum – (CaSO ₄ .2H ₂ O) Jarosite – (KFe ³⁺ ₃ (OH) ₆ (SO4) ₂) Opal & hydrated silica Phyllosilicates Other hydrated minerals (TBR)
Water, Ice	Icy soils Glacial deposits
Iron*	Hematite Magnetite Laterites
Aluminum*	Laterites Aluminosilicates Plagioclase Scapolite
Magnesium*	Mg-sulfates
Silicon	Pure amorphous silica Hydrated silica <u>Phyllosilicates</u>
Titanium*	Ilmenite

Water



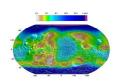
Map of **aqueous mineral** detections

New Craters Confirm Shallow, Nearly Pure Ice

Newly formed craters exposing water ice (red) are a subset of all new craters (yellow). Background color is TES dust index. (Adapted from Byrne et al. (2011) Science)

Atmospheric Resource Processing

Strengths



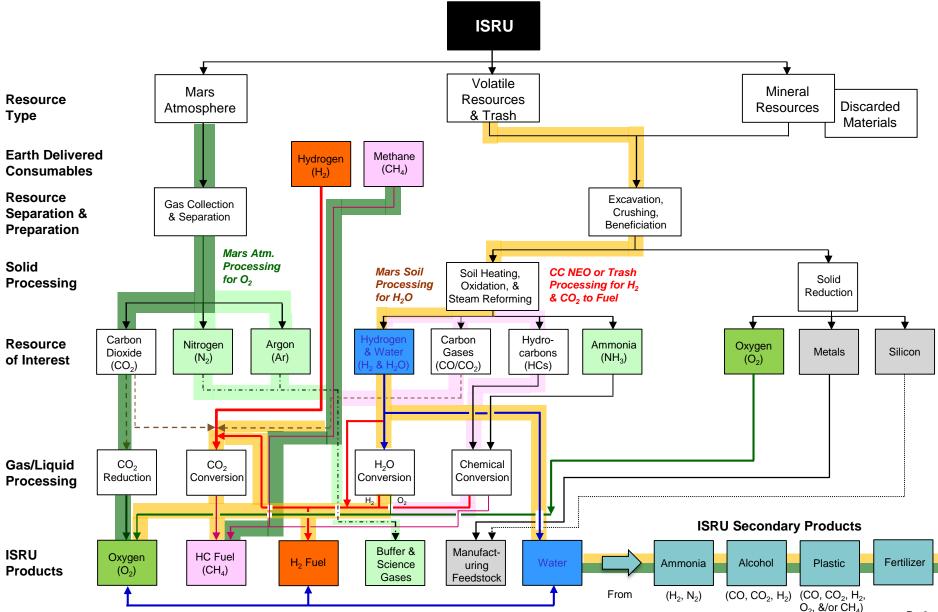
- Atmospheric resources are globally obtainable (no landing site limitations)
- Production of O_2 only from carbon dioxide (CO_2) makes >75% of ascent propellant mass
- Significant research and testing performed on several methods of atmospheric collection, separation, and processing into oxygen and fuel; including life support development

- Weaknesses
 - Production of methane delivery of hydrogen (H₂) from Earth which is volume inefficient or water from the Mars soil (below)
 - Mars optimized ISRU processing does not currently use baseline ECLSS technologies

Mars Soil Water Resource Processing (ties to Lunar Ice & Regolith)

Strengths

- Surface material characteristics studied from Mars robotic landers and rovers
- Water (in the form of hydrated minerals) identified globally near the surface
- Lunar regolith excavation and thermal processing techniques can be utilized for Mars
- Low concentrations of water in surface hydrated mineral soil (3%) still provides tremendous mass benefits with minimal planetary protection issues


Weaknesses

- Risk associated with the complexity of the required surface infrastructure needs must be evaluated. Significant autonomous operations required.
- Local/site dependency on water resource concentration and form
- Release of contaminants with water
- Concerns from planetary protection and search for life with water extraction at higher concentrations

ISRU Consumables Production Decision Tree

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov

ISRU Development and Implementation Challenges

Space Resource Challenges

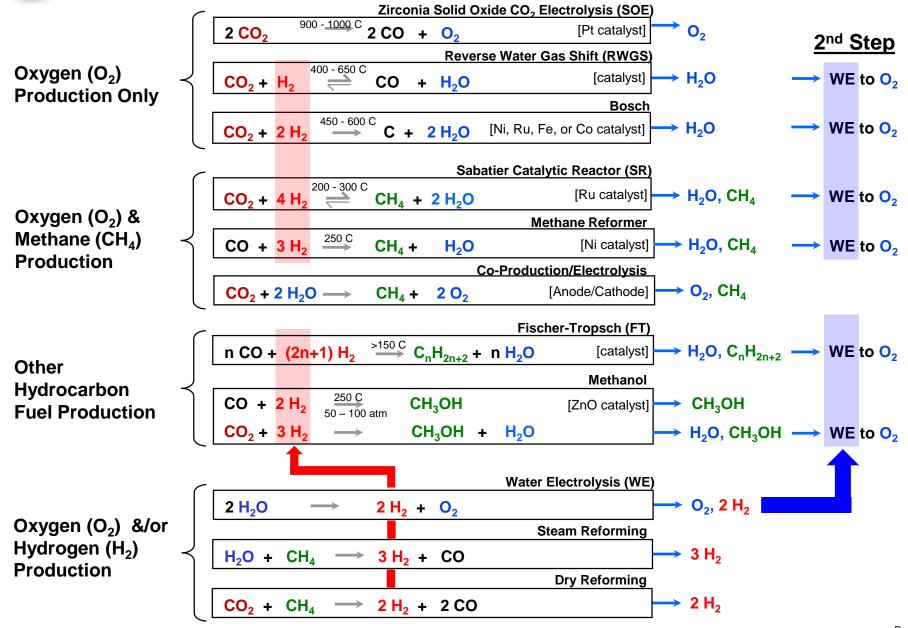
- What resources exist at the site of exploration that can be used?
- What are the uncertainties associated with these resources?
- How to address planetary protection requirements?

ISRU Operation Challenges

- How to operate in extreme environments, including temperature, pressure, dust, and radiation?
- How to operate in low gravity or micro-gravity environments?

ISRU Technical Challenges

- Is it technically feasible to collect, extract, and process the resource?
- How to achieve long duration, autonomous operation and failure recovery?
- How to achieve high reliability and minimal maintenance requirements?


ISRU Integration Challenges

- How are other systems designed to incorporate ISRU products?
- How to optimize at the architectural level rather than the system level?
- How to manage the physical interfaces and interactions between ISRU and other systems?

Overcoming these challenges requires a multi-destination approach consisting of resource prospecting, process testing, and product utilization.

The Chemistry of Mars ISRU

Enabling or

Four Options for Mars ISRU Ascent Propellant Production:

- 1. Make oxygen (O_2) from Mars atmosphere carbon dioxide (CO_2) ; Bring fuel from Earth
- 2. Make O_2 and fuel/CH₄ from Mars atmosphere CO_2 and hydrogen (H₂) from Earth
- 3. Make O_2 and fuel/CH₄ from Mars atmosphere CO_2 and water (H₂O) from Mars soil
- 4. Make O_2 and H_2 from H_2O in Mars soil

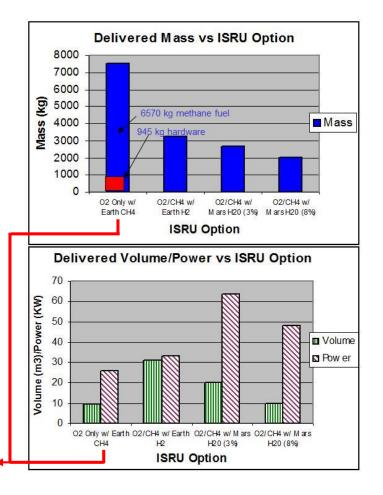
							Pr	ocess	Subsy	stems	s/Optio	ns		
	ISRU Resource Processing Options	ISRU Products	Mars Resource(s)	Earth Supplied	CO ₂ Collection & Conditioning	Solid Oxide CO ₂ Electrolysis	Reverse Water Gas Shift (RWGS)	Sabatier	Bosch	Liquid Water Electrolysis	Solid Oxide H ₂ O Electrolysis	Ionic Liquid Electrolysis	Soil Processing	Soil Excavation & Delivery
				1 ^a	Х	Х								
_		O ₂	CO ₂ CH ₄ (~6600 kg) X X X CO ₂ X I	CH₄ (~6600 ka)	Х		Х			Х				
Enabling		02			Х	Х								
nab	Atmosphere Processing											Х		
ш		O ₂ , CH ₄ , H ₂ O			X X	Х	X	X X		Х	Х			
		$O_2, C \Pi_4, \Pi_2 O$	H ₂ * (~2000 kg) <mark>2</mark>	X							Х			
Enabling or Enhancing	Soil Processing	O ₂ , CH ₄ , H ₂ O	H ₂ O	CH ₄ **(~6600 kg)	~					Х		~	Х	Х
halin	Atmosphere & Soil	tmosphere & Soil O ₂ , CH ₄ , H ₂ O CO ₂ & H		3	Х			Х		Х			Х	Х
Ena Ent	Processing		CO ₂ & H ₂ O		Х			х			х		х	Х
	*II for water and methods a	no al voti o vo				1 2	8 2 \/		aluato	d in M	lare D			

*H₂ for water and methane production

**Assumes methane fuel vs hydrogen fuel for propulsion

1, 2, & 3 Were Evaluated in Mars DRA 5.0

Mars Human Exploration DRA 5.0 ISRU vs Non-ISRU Ascent Results


- Lowest Power/Volume: Process atmospheric CO₂ into O₂; Bring methane (CH₄) from Earth
- **Lowest Mass**: Process atmospheric CO₂ with Soil processing for H₂O into O₂ and CH₄
- Study Results
 - Atmosphere processing into O₂ baselined:
 Lowest Risk
 - Continue evaluation of water on Mars and soil processing to reduce risk

	_					
DAV Mass (no ISRU)						
,540 kg						
,902 kg						
687 kg						
,300 kg						
,428 kg						
	,540 kg ,902 kg 687 kg					

* Wet mass; does not include EDL System

[†] Packaging not currently considered

DAV Mass (w/O2 ISRU)						
Ascent Stg 2	9,330	kg (CH4)				
Ascent Stg 1	12,156	kg (CH4)				
ISRU and Power †	11280	kg				
Descent stage*	21,297	kg				
Total	54,062	kg				

>25 MT savings (>30%)

ISRU system Mass Comparison

The ISRU system leverages the power and radiator systems that are pre-positioned by the lander for human systems. So these are not explicitly part of the ISRU system.

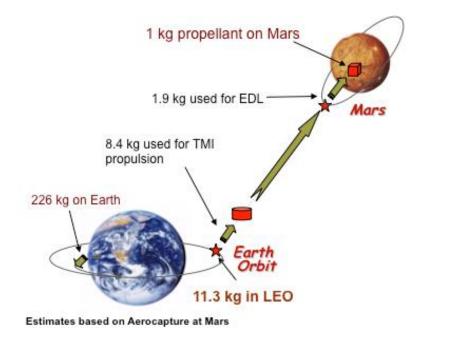
	Hardware Mass, mt	Total Mass, mt (ISRU Hardware + Propellant from Earth)	Ratio: Propellant produced per kg of landed mass
$\frac{\text{Case 1}}{\text{ISRU for LO}_2 \&}$ $\text{LCH}_4: \text{Sulfates}$	1.6	1.6	22.1
$\frac{\text{Case 2}}{\text{ISRU for LO}_2 \&}$ $\text{LCH}_4: \text{ Regolith}$	1.7	1.7	20.5
<u>Case 3</u> ISRU for LO ₂ only (no water)	1.0	8.0 (1mt hardware + 7mt Methane)	3.1
<u>Case 4</u> Propellant only (no ISRU)	NA	31.6 (24mt Oxygen + 7mt Methane)	NA

L	anded	Mass	Comp	arison
35000				
30000				
25000				
20000				
5°				
15000				
10000				
5000				
0	_		_	
	LOX	& L(OX only	No ISRU
	LCH4			(propellant
	Baseli			only)
	Busch			only
	ISRU Pla	nt total	LCH	I4 ■ Lox

How Propellant Production Enables Future Moon & Mars Missions

Every 1 kg of propellant made on the Moon or Mars saves 7.4 to 11.3 kg in LEO Potential 340 mT launch mass saved in LEO = 3 to 5 SLS launches avoided per Mars Ascent

Mars mission


- Oxygen only
- Methane + Oxygen

75% of ascent propellant mass: ~ 23 mT 100% of ascent propellant mass: ~ 30 mT Regeneration of rover fuel cell reactant mass

> LEO Lunar Destinat

Lunar Surface

Earth Surface

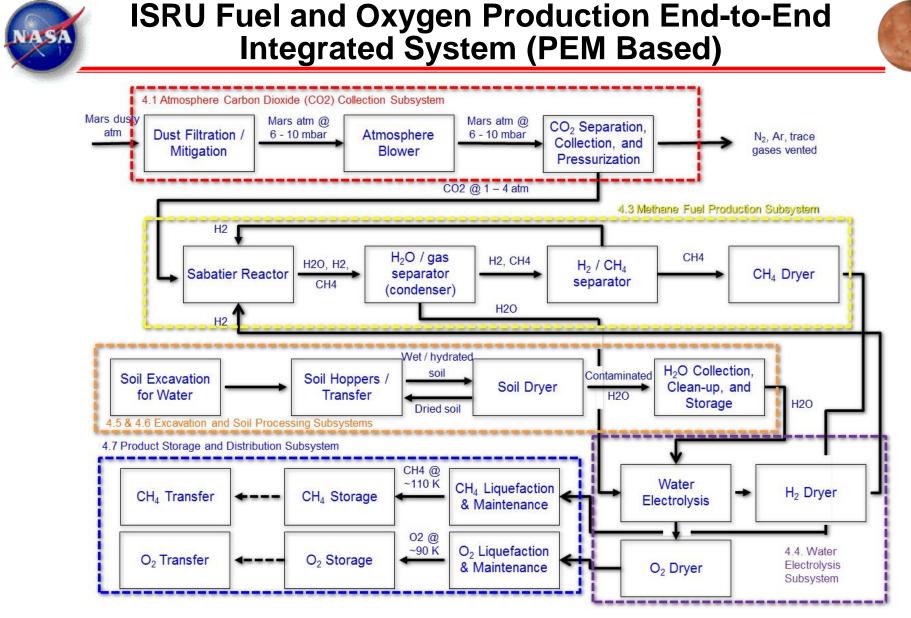
	A Kilogram of Mass Delivered Here	Adds This Much Initial Architecture Mass in LEO	Adds This Much To the Launch Pad Mass
	Ground to LEO		20.4 kg
-/	LEO to Lunar Orbit (#1→#2)	4.3 kg	87.7 kg
	LEO to Lunar Surface (#1→#3; e.g., Descent Stage)	7.5 kg	153 kg
	LEO to Lunar Orbit to Earth Surface (#1→#4→#5; e.g., Orion Crew Module)	9.0 kg	183.6 kg
2	Lunar Surface to Earth Surface (#3→#5; e.g., Lunar Sample)	12.0 kg	244.8 kg
ion Orbit	LEO to Lunar Surface to Lunar Orbit (#1→#3→#4; e.g., Ascent Stage)	14.7 kg	300 kg
ous Orbit	LEO to Lunar Surface to Earth Surface (#1→#3→#5; e.g., Crew)	19.4 kg	395.8 kg

Simplicity of ISRU Processing

- Single step process for methane.
 - Two or more steps for most other hydrocarbon fuels
- High processes conversion:
 - >99% methane product from CO_2 in single pass (recycle H_2)
 - Other fuels (such as Fischer Tropsch) have wide band of hydrocarbons produced; must separate and recycle (increase complexity), or accept (decrease in engine performance)

Higher propulsion efficiency

- Pros: Higher Isp than most other hydrocarbons
 High ox/fuel (O/F) mixture ratio. (Max. benefit for O₂ only ISRU)
 Clean burning; no coking
- Cons: Methane is lower density than other hydrocarbons
 High H-to-C ratio (Min. benefit for Earth provided H₂ ISRU options)


		LO ₂ /Hydrazine	LO ₂ /Methane	LO ₂ /Propane	LO ₂ /Methanol	LO ₂ /Ethanol	LO ₂ /Ethylene	LO ₂ /Kerosine	LO ₂ /LH ₂	LO ₂ /LH ₂
	Press-fed	Press-fed	Press-fed	Press-fed	Press-fed	Press-fed	Press-fed	Press-fed	Press-fed	Pump-fed
lsp	328	365	362	357	335	340	364	352	441	454
MR	1.9	1.0	3.5	3.25	1.5	2	2.75	3.0	5.25	6.0
Fuel Density (kg/m ³)	880	1020	422	500-580	792	789	568	810	71	71
Fuel B.P (K)	360	387	111.7	230.9	337.8	351.5	169.5		20.3	20.3

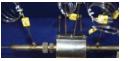
Based on Chamber Pressure (Pc) = 500 psi; Area Ratio (AR)=150:1; Efficiency = 93%

Higher compatibility with liquid oxygen

- Same technology, insulation, cryocoolers, and tanks used for CH₄ as with LO₂
- Thermal compatibility of lines and engine/thruster thermal management

Overall, choice of methane fuel is an overall balance of performance, storage, compatibility, and production

Each Function influences the design & operation of connecting boxes You can't optimize a single functional box; You need to optimize the system



Past/Recent Mars ISRU Technology Development

CO₂ Collection & Separation

- Mars dust filtration filter, electrostatic, cyclone (GRC, KSC, JPL, SBIR)
- Mars atmosphere adsorption pump Day/Night (LMA, JPL, ARC, JSC)
- Microchannel rapid-cycle adsorption pump (PNNL, SBIR)
- Mars atmosphere solidification (CO₂ freezing) pump (LM, SBIR, KSC)
- Mars atmosphere compressor (MOXIE/SBIR)
- Ionic liquids adsorption/electrochemistry (MSFC, SBIRs)

CO₂ Processing

- Solid Oxide CO₂ Electrolysis (NASA, Universities, Industry, SBIRs)
- Low pressure CO₂ Glow/Plasma Dissociation (Universities)
- Reverse Water Gas Shift (KSC, PNNL, SBIRs)
- Sabatier reactors (NASA, Industry, SBIRs)
- Bosch/Boudouard reactors MSFC, KSC, Industry, Univ., SBIRs
- Methane reformer (JPL, SBIRs)
- Hydrocarbon fuel reactors methanol, toluene, ethylene, etc. (SBIRs)
- Microchannel chemical reactors/heat exchangers (PNNL, SBIRs)
- ElectrolysisCo-Production O₂/Fuel PEM and Ionic Liquids (MSFC/KSC, SBIRs)

Water Processing

- Water electrolysis/decomposition (NASA, Industry, SBIRs)
- PEM-High and Low Pressure & Solid Oxide (NASA, Industry, SBIRs)
- Water separation/collection membrane & cooling (NASA, Industry)

Past/Recent Mars ISRU Technology Development

Soil Acquisition and Excavation

- Sample drills and augers (JPL, ARC, SBIRs)
- Scoops and buckets (GRC, KSC, JPL, Univ., SBIRs)
- Auger and pneumatic transfer (KSC, GRC, SBIRs)

Soil Processing

- H₂ Reduction of regolith reactors (NASA, LMA)
- Microwave soil processing (MSFC, JPL, SBIR)
- Open and closed Mars soil processing reactors (JSC, GRC, SBIRs)
- Downhole soil processing (MSFC, SBIRs)
- Capture for lunar/Mars soil processing (NASA, SBIRs)
- Water cleanup for lunar/Mars soil processing (KSC, JSC, SBIRs)

Trash/Waste Processing into Gases/Water

 Combustion, Pyrolysis, Oxidation/Steam Reforming (GRC, KSC, SBIRs)

Mars Atmosphere Processing

- 1st Gen Sabatier/Water Electrolysis (SWE) breadboard under ambient & Mars environment testing in late '90s/early 00's (NASA, Lockheed Martin)
- 1st Generation Reverse Water Gas Shift with and w/o Fuel production (NASA, Pioneer Astronautics)

Sabatier/Water Electrolysis w/ CO₂ Absorption (LMA & JSC) [Tested under simulate Mars surface conditions]

Combined Sabatier/ RWGS/Water Electrolysis (Pioneer Ast.)

CO₂ Electrolysis (GRC) [Tested under conference conditions]

Reverse Water Gas Shift/ Water Electrolysis (KSC & Pioneer Astrobotics)

2nd Gen MARCO POLO atmosphere processing (JSC, KSC)

 $\begin{array}{l} \mbox{Atm Processing Module} \\ \mbox{0.088 kg/hr CO}_2 \\ \mbox{0.033 kg/hr CH}_4 \\ \mbox{0.071 kg/hr H}_2 \mbox{O} \end{array}$

Water Processing Module 0.52 kg/hr H_2O 0.46 kg/hr O_2 0.058 kg/hr H_2

Lunar/Mars Soil Processing

1st Gen H₂ Reduction from Regolith Systems (NASA, LMA)

ROxygen H₂ Reduction Water Electrolysis Cratos Excavator

PILOT H₂ Reduction Water Electrolysis Bucketdrum Excavator

2nd Gen MARCO POLO soil processing system (JSC, KSC)

Soil Processing Module 10kg per batch; 5 kg/hr 0.15 kg/hr H₂O (3% water by mass)

Mars 2020 ISRU Demo

- Make O2 from Atm. CO₂: ~0.01 kg/hr O₂; <600 W-hrs; >10 sols of operation
- Scroll Compressor and Solid Oxide Electrolysis technologies
- Payload on Mars 2020 rover

Resource Prospector – RESOLVE Payload

- Measure H₂O: Neutron spec, IR spec., GC/MS
- Measure volatiles H₂, CO, CO₂, NH₃, CH₄, H₂S: GC/MS
- Possible mission in 2020

Orbiters/Cubesats

- Lunar Flashlight: Use las
 - Lunar Ice Cube:
 - Skyfire

Use laser and spectrometer to look into shadowed craters for volatiles Broadband InfraRed Compact High Resolution Explorer Spectrometer (BIRCHES) instrument Spectroscopy and thermography for surface characterization

 Mars 2022 Orbiter: Radar for ground ice and spectrometers for hydrated minerals

Needs

Propellant production for human mission ascent (Mars DRA 5.0)

- For O_2 only: 2.2 to 3.5 kg/hr O_2 ; 480 days or 300 days
- For O_2/CH_4 :
 - 0.55 to 0.88 kg/hr CH₄
 - 1.2 to 2.0 kg/hr H₂O; (41 to 66 kg/hr soil @ 3% H2O by mass)
- Propellant production for Mars Sample Return

 - 0.35 to 0.5 kg/hr O₂; 420 to 500 days (multiple studies) 0.75 to 1.5 kg/hr O₂; 35 or 137 days (Mars Collaborative Study 4-2012)

Propellant production for Mars ISRU Demo

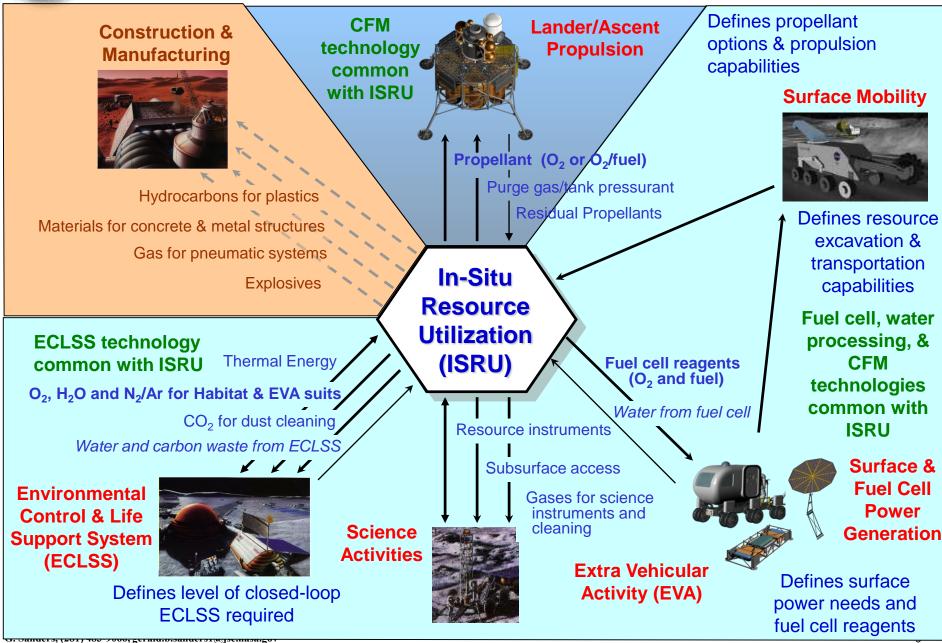
- 0.02 kg/hr O_2 ; 50 operations (Mars 2020 AO requirement)
- 0.00004 kg/hr O₂; 10 operations (MIP demo on Mars 2001 Surveyor)

Demonstrated

Mars ISRU Testbeds (late '90s early '00s):

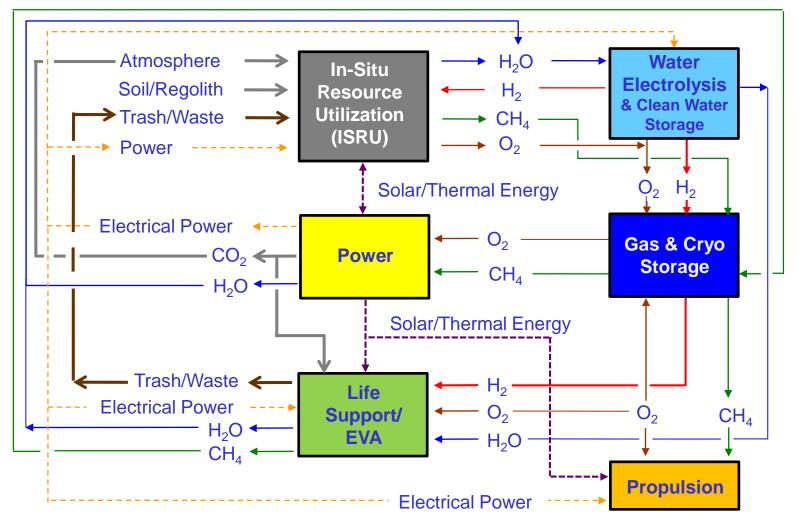
- LMA/JSC Sabatier/Water Electrolysis: 0.02 kg/hr O₂; 0.01 kg/hr CH₄
- KSC RWGS/Water Electrolysis
 - $0.087 \text{ kg/hr} \overline{O}_2$
 - Pioneer Astronautics (SWE & RWGS): 0.02 kg/hr O₂; 0.01 kg/hr CH₄ (IMISPPS): 0.031 kg/hr 0₂, 0.0088 kg/hr CH₄
- Atmosphere Processing: MARCO POLO (Individual subsystems)
 - CO₂ Collection: 0.088 kg/hr CO₂
 - \dot{CO}_2^2 Processing: 0.066 kg/hr of \dot{O}_2 ; 0.033 kg/hr of CH_4 ; 0.071 kg/hr of H_2O
 - Water Processing: 0.52 kg/hr H_2O ; 0.46 kg/hr O_2

Soil Processing:

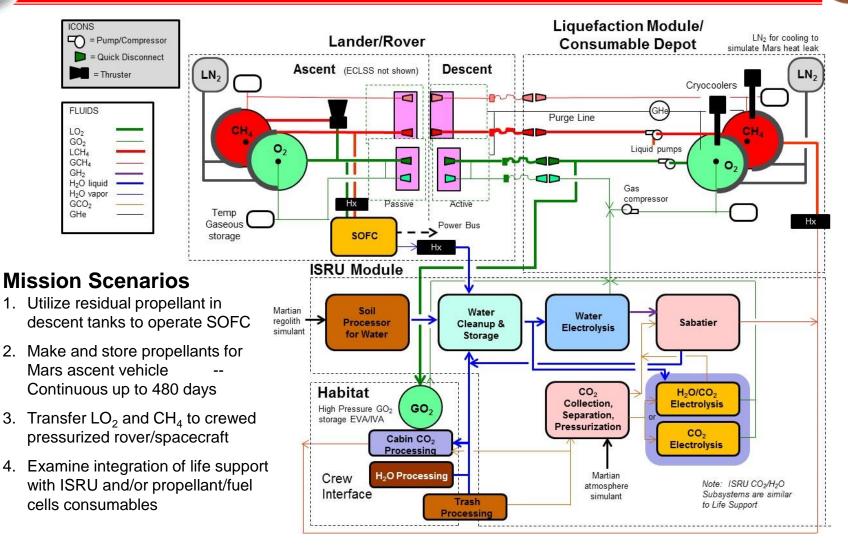

- Lunar H₂ Reduction ROxygen Reactor: 5 to 10 kg/hr soil:
- Lunar H_2 Reduction PILOT Reactor: 4.5 to 6 kg/hr soil:
- Mars Soil Auger MISME:

- 0.18 to 0.2 kg/hr soil
- Mars Soil Reactor-Pioneer Ast. Hot CO₂ 4 kg/hr soil per batch —

ISRU Strongly Influences Element Designs and Architecture Choices



Integrated Fluids & Commodities For Exploration Systems

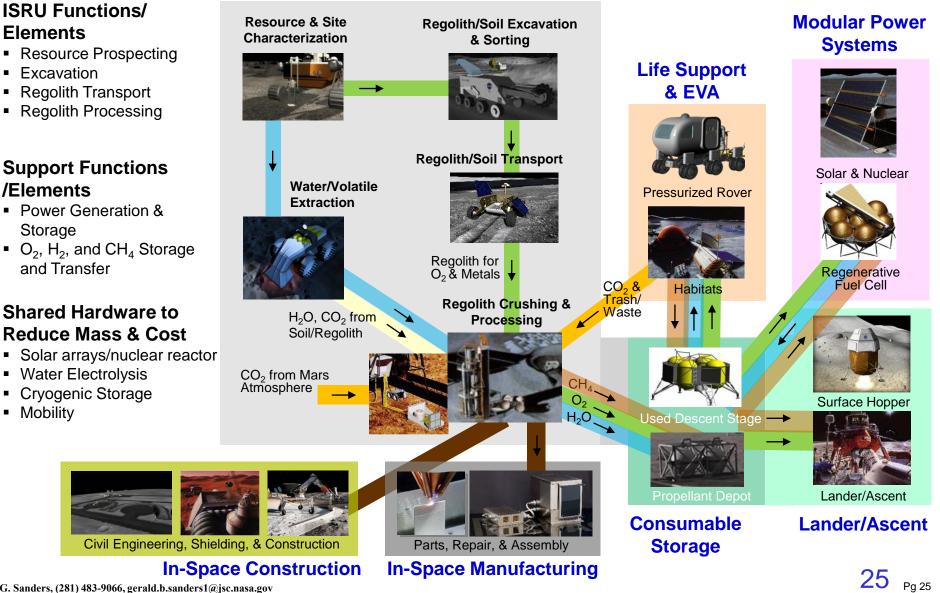

Goal is to 'Close the Loops' Across Multiple Systems

- Identify where common fluids, pressures, quality, and standards are possible
 - Enables common storage, distribution, and interfaces
- Identify where common processes and technologies are possible
 - Enables common hardware for flexibility and reduced DDT&E
 - > Enables modularization of non-unique hardware for multiple systems

Integrated ISRU, Power, Life Support, and Propulsion Systems

It is important that technologies and processes selected and element operations be considered at the architecture level vs optimized for each element

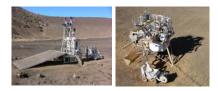
Backup

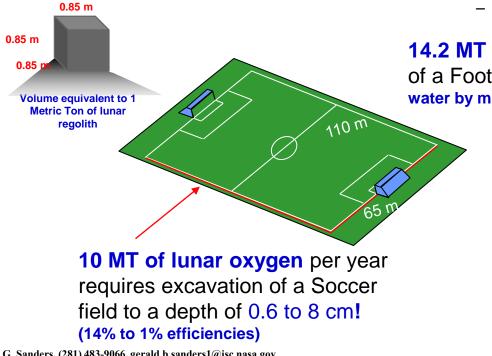


ISRU Integrated with Exploration Elements

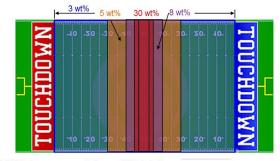
(Mission Consumables)

ISRU Resources & Processing




- Excavation rates required for lunar 10 MT O₂/yr production range based on extraction efficiency of process selected and location
 - H₂ reduction at poles (~1% efficiency): 150 kg/hr
 - CH₄ reduction (~14% efficiency): 12 kg/hr
 - Electrowinning (up to 40%): 4 kg/hr
- Excavation rates required for 14.2 MT H₂O/mission production range based on water content
 - Hydrated soil (3%): 41 kg/hr
 - Icy soil (30%): 4 kg/hr

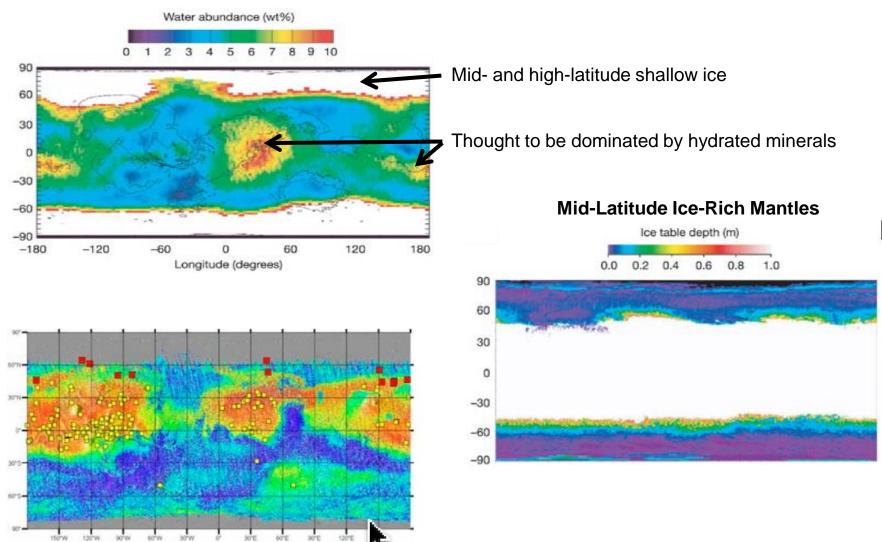
- Cratos & LMA rovers: 10 to 20 kg/bucket at field test in Hawaii
- Robotic excavation competitions:
 - 2009: 437 kg in 30 min.; remote operation
 - 2015: 118 kg in 20 min; autonomous operation
- Soil Processing
 - ROxygen: 5-10 kg/hr
 - PILOT: 4.5-6 kg/hr
 - Pioneer SBIR: 4 kg/hr
 - MISME: 0.2 kg/hr



14.2 MT of Mars water per mission requires excavation of a Football field to a depth of 1.1 to 9.6 cm! (30% to 3%)

water by mass)

H ₂ O	1.238	kg/hr	Soil	1500	kg/m 3				
	480	days	Ice	940	kg/m3				
Water	Soil	Water	Soil	Total	Extraction	Ave Density	Tot Vol	FB Depth	FB Field
wt%	wt%	kg	kg	kg	80%	kg/m3	m3	cm	yds
3	97	14261.76	461130.2	475392.0	594240.0	1483.20	400.65	9.58	100.00
5	95	14261.76	270973.4	285235.2	356544.0	1472.00	242.22	5.79	60.46
8	92	14261.76	164010.2	178272.0	222840.0	1455.20	153.13	3.66	38.22
30	70	14261.76	33277.4	47539.2	59424.0	1332.00	44.61	1.07	<mark>11.14</mark>
70	30	14261.76	6112.2	20373.9	25467.4	1108.00	22.99	0.55	5.74



Resource	Potential Miner	al Source	Reference
Water, Hydration/ Hydroxyl	Gypsum – $(CaSO_4.2H_2O)$ Jarosite – $(KFe^{3+}(OH)_6(SO4)_2)$ Opal & hydrated silica Phyllosilicates Other hydrated minerals (TBR)		Horgan, et al.(2009), Distribution of hydrated minerals in the north polar region of Mars, J. Geophys. Res., 114, E01005 Mustard et al.(2008), Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument, Nature 454, 305-309
Water, Ice	lcy soils Glacial deposits		
Iron*	Magnetite Tri	arosite iolite nenite	Ming et al. (2006), Geochemical and mineralogical indicators for Aqueous processes in Columbia Hills of Gusev Crater, Mars" JGR 111, E02S12
Aluminum*	Laterites Aluminosilicates Plagioclase Scapolite		
Magnesium*	Mg-sulfates		
Silicon	Pure amorphous silica Hydrated silica Phyllosilicates	a	Rice et al. (2010), "Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping" Icarus 205 (2010) 375–395
Titanium*	Ilmenite		

Mars Water Form & Distribution

New Craters Confirm Shallow, Nearly Pure Ice

Newly formed craters exposing water ice (red) are a subset of all new craters (yellow).
 Background color is TES dust index. (Adapted from Byrne et al. (2011) Science)

Summary of What we Know About Water in "Hydrated Mineral Deposits"

Type of Deposit	General Description	How it has been Modeled Spectrally	Possible water content	Issues
Loose regolith	Powdered rock, salts, amorphous materials	Mix of plagioclase, olivine, pyroxene, npFeOx	4(2-5)% from spectral modeling and direct measurement	Easy to harvest; perchlorate salts may be common
Layered phyllosilicate	Stratified deposits rich in smectite	Mix of up to 50% smectite clays with primary igneous minerals (ol, px. Plag)	9-10% based on spectral modeling and assumed low hydration state of clays	Indurated and competent; more erodible than basalt
Crustal phyllosilicate	Smectite clays in basaltic groundmass	Mix of 5-10% smectite with weakly altered basalt	3-5% based on spectral modeling, examination by Opportunity	Fractured bedrock
Sulfate- bearing layered deposits	Dust + sand with variable content and type of sulfate cement	Mix of sulfate and hematite with Mix of plagioclase, olivine, pyroxene, npFeOx	6-14% from direct measurement of elemental abundances, hydration state from spectral models	Competent but easily erodible by wind; leaves little debris so must be fine-grained
Carbonate- bearing deposits	Olivine partly altered to carbonate	Mixture of olivine basalt and carbonate	7% based on spectral models	Probably very indurated bedrock
Hydrate silica- bearing deposits	Silica with range of hydration mixed w/ basalt	(Assumed: cement in basaltic sediment)	(5% based on assumed composition, could be up to)	Induration and purity probably highly variable

Water/Volatiles Released from Mars Soil

(SAM instrument: Rocknest sample)

counts/s

counts/s

Region 1: <300 C

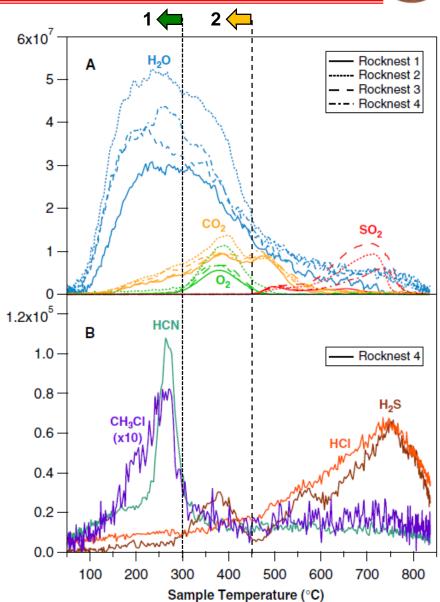
- 40-50% of the water released
- Minimal release of HCl or H₂S

Region 2: <450 C

- >80% of the water released
- CO₂ and O₂ released from decomposition of perchlorates
- Some release of HCl or H₂S but before significant amounts are release

Predicted Volatile Release Based on Lab Experiments

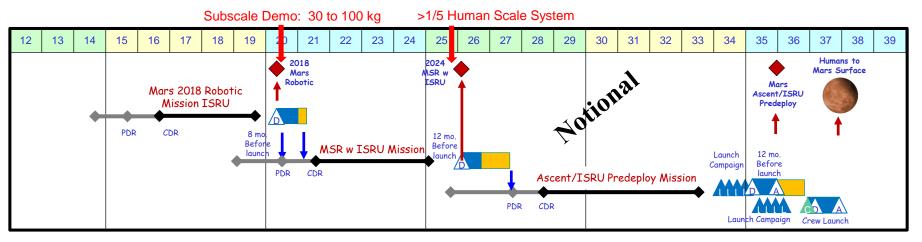
CO2 released by


- 1. Absorbed atmosphere <200C
- 2. Oxidation of organic material >200 C
- 3. Thermal decomposition of carbonates >450 C

O2 released by

- 1. Dehydroxylation of clays <350 C
- 2. Decomposition of non-metal and metal oxides >500 C

$\underline{CH_3CI}$ and $\underline{CH_2CI_2}$ released by


1. Decomposition of $Mg(CIO_4)_2$ perchlorate >200C

- Resource uncertainty and environmental impact on ISRU processes are the greatest risks for ISRU implementation:
 - Water (hydration and ice) resources have significant interest for science, search for life, and ISRU.
 - Dust content, concentration, size/shape distribution at surface are extremely important for long-term operation
 - Joint Science/Exploration mission examining soil/water, dust, atmosphere, and impact on critical ISRU systems provide synergistic goals/objectives
- To Minimize Risk, sequential development and demonstration approach recommended where lessons-learned flow into next effort before PDR/CDR

Need to start now for human mission to Mars by end of 2030's

ISRU Processes Affected by Mars Environment & Resource Characteristics

Mission Environment	ISRU Process	Potential Impacts/Effects
Surface regolith properties (fines & bulk)	Excavation and Material	Could reduce efficiency of regolith excavation and material transfer due to:
	Transfer	Adhesion of particles/grains
		Compactness
		Water/ice content
	Soil Processing unit	Could cause sealing problems for multiple cycle processing
	Inlet/Outlet	
	Water Filtration & Cleanup	Fines in soil could reduce performance of water cleanup and processing
Dust property uncertainties	Filter Design	Could reduce CO ₂ acquisition due to:
 Particle size/shape distribution 		Improper micron size level required to filter dust
Local dust amount		Change in flow rate/Delta P across filter
Dust particle deposition rate		Improper dust holding capacity or regeneration capability
 Dust mineral composition 	Chemical Reactors	Could cause reduced performance or failure due to dust poisoning catalysts and
		electro-chemical/thermal reactors
	Radiators & Thermal	Could cause insufficient heat rejection or increased thermal power demand at night
	Control	due to:
		Change in surface emissivity
		Change in heat transfer coefficient
	Solar Power	Could cause insufficient power or oversized array to handle degradation over time
		Dust coating and abrasion could reduce cell efficiency
		Deployment and sun tracking mechanism binding from dust
	Mobility/Excavation	Could cause reduced performance or failure due to dust intrusion into rotating
		mechanisms
	Control Electronics	Could cause arching, grounding, and electrostatic discharge
Solar/thermal conditions based on:	Solar Power	Could cause insufficient power or oversized array to handle degradation over time
 Landing site elevation 		Temperature cycles and UV radiation degraded cells
Landing latitude		Structure and deployment mechanisms need to withstand dust/wind loads
 Day/night cycles 	Radiators & Thermal	Radiator/thermal control system must be sized to surface and sky temperatures,
	Control	and solar flux/angle on incidence
Atmospheric conditions based on:	Atmosphere Collection	Adsorption beds, pumps, and separation units must be sized to CO2 partial
 Landing site elevation 		pressure
 Annual pressure/temperature cycle 	Control Electronics	Low pressure atmosphere could cause arching, grounding, and electrostatic
• Day/night cycles		discharge for high voltage applications
Atmospheric constituents & concentration	Chemical Reactors	Atmospheric constituents/impurities could reduce performance or failure due to
		poisoning catalysts and electro-chemical/thermal reactors

• What resources exist that can be used?

- Oxygen and metals from regolith/soils
- Water/Ice
- Atmospheres & volatiles
- Thermal environments
- Sunlight
- Shielding: Lava tubes, regolith, water, hills/craters

• What are the Uncertainties associated with the Resources?

- Polar volatiles:
 - Where is it, What is there, how is it distributed, terrain and environment, contaminants?
- Mars water/ice in soil
 - What form is the water (ice, mineral-bound), how is it distributed, terrain and environment, contaminants?
- Near Earth Objects/Asteroids/Mars Moons
 - What is there, how is it distributed, environment, contaminants
 - Ability to revisit NEO of interest (time between missions)
 - What techniques are required for micro-g mining and material processing?

- Is it Technically feasible to collect, extract, and process the Resource?
 - Energy: Amount and type (especially for polar resources in shadowed regions)
 - Life, maintenance, performance
 - Amount of new technology required

Long-duration, autonomous operation

- Autonomous control & failure recovery
- No crew for maintenance; Non-continuous monitoring from Earth

High reliability and minimum (zero) maintenance

- No (or minimal) maintenance capability for pre-deployed and robotic mission applications
- Networking/processing strategies (idle redundancy vs over-production/degraded performance)
- Develop highly reliable thermal/mechanical cycle units (valves, pumps, heat exchangers, etc.)
- Develop highly réliable, autonomous calibration control hardware (sensors, flowmeters, etc.)

Operation in severe environments

- Efficient excavation of resources in dusty/abrasive environments
- Methods to mitigate dust/filtration for Mars atmospheric processing
- Micro-g environment for asteroids and Phobos/Deimos

Integration and Operation with other Exploration Systems

 Exploration systems must be designed to utilize ISRU provided products; may cause selection of different technologies/approaches

Resource Unknowns

- <u>Atmosphere resource unknowns</u>: i) size distribution, number of particles, and dust type near surface
- Water resource unknowns: No single form of water resource
 - <u>Hydrated mineral/soil unknowns</u>: i) Water content in soil as a function of location, depth, and soil type; ii) hydrated mineral/soil physical characteristics for excavation and transfer; iii) contaminants released during evolution and collection of water from hydrated minerals/soil
 - <u>Subsurface ice unknowns</u>: i) Ice content in soil as a function of location, depth, and soil type; ii) soil/ice physical characteristics for drilling and transfer; iii) contaminants released during evolution and collection of water from icy soils

Long-duration, autonomous operation

- Autonomous control & failure recovery
- No crew for maintenance; Non-continuous monitoring from Earth

High reliability and minimum (zero) maintenance

- No (or minimal) maintenance capability for pre-deployed and robotic mission applications
- Networking/processing strategies (idle redundancy vs over-production/degraded performance)
- Develop highly reliable thermal/mechanical cycle units (valves, pumps, heat exchangers, etc.)
- Develop highly reliable, autonomous calibration control hardware (sensors, flowmeters, etc.)

Operation in severe environments

- Efficient excavation of resources in dusty/abrasive environments
- Methods to mitigate dust/filtration for Mars atmospheric processing
- Micro-g environment for Phobos/Deimos

Core ISRU Technologies Are Applicable To Both Moon and Mars

Lunar & Mars ISRU Share Many Common Technologies & Modules

Lunar ISRU	Core Technologies	Mars ISRU
 Site preparation Oxygen extraction 	Soil excavation and transfer	
Water & volatile extraction	• Water extraction from soil/solid material	 Water extraction from soil
	 Water Distillation/Cleanup 	
Pneumatic excavation	 CO₂ & N₂ Acquisition & —— Separation 	 Mars atmosphere resource collection and conditioning
Methane regeneration for carbothermal reduction	Sabatier Reactor	• Fuel production
carbothermal reduction	Methane Reforming	
Crew waste/trash	∫ • RWGS Reactor -	• Oxygen production
processing	• CO ₂ Electrolysis	
	$(\cdot H_2 O Separators)$	
Water electrolysis	• H ₂ O Electrolysis	→ • Water electrolysis
	• H ₂ O Storage	
 All processing systems 	• Heat Exchangers	 All processing systems
	(• Liquid Vaporizers	
All oxygen storage and	• O ₂ & Fuel Storage	 All oxygen storage and
transfer systems	$\langle (0-g \& reduced-g) \rangle > -$	transfer systems (Nete: Mars stressphere dass)
	• O ₂ Feed & Transfer Lines	(Note: Mars atmosphere does not allow for MLI usage)
	• O ₂ /Fuel Couplings	not anoth for the dougo)

ISRU Shares Common Technologies with Other Mission Elements

ISRU Maximizes Benefits, Flexibility, & Affordability

 Modular hardware & common mission fluids reduced logistics, increases reliability & flexibility, and reduces development and mission costs

In-Situ Production Of Consumables for Propulsion, Power, & ECLSS

Fuel Cell Power for Spacecraft, Rovers & EVA

0-g & Surface Propellant Depots

Core Technologies

- Soil Excavation and Transfer
- Water extraction from Soil/Solid Material
- Water Distillation/Cleaning
- CO₂ & N₂ Acquisition & Separation
- Sabatier Reactor
- RWGS Reactor
- CO₂ Electrolysis
- Methane Reforming
- H₂O Separators
- H₂O Electrolysis
- Fuel Cells

-> H ->


- H₂O Storage
- Heat Exchangers
- Liquid Vaporizers
- O₂ & Fuel Storage (0-g & reduced-g)
- O₂ Feed & Transfer Lines
- O₂/Fuel Couplings
- O₂/Fuel Igniters & Thrusters

Life Support Systems for Habitats & EVA

Habitat, EVA, and radiation shielding

Water – Gaseous H₂/O₂ Based Propulsion

Station keeping, depots, integrated power

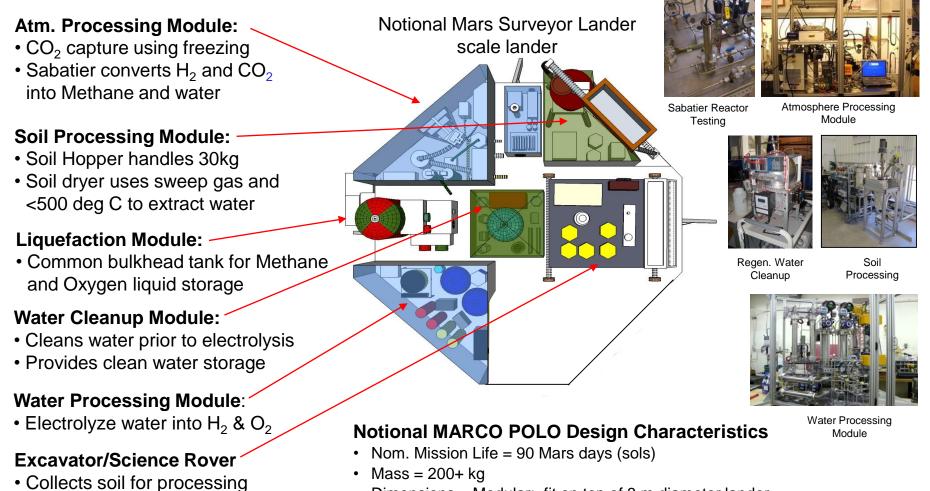
Non-Toxic O₂-Based Propulsion

Launch vehicle & human/robotic landers

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov

ISRU	Life Support		
Resource	e Feedstock		
Potentially unlimited (except for Trash)	Controlled feedstock as function of number of crew		
<100% collection efficiency acceptable	Maximize collection efficiency		
Feedstock input ratios function of resource availability	Feedstock input rations function of crew waste products		
Process	ng Systems		
External to habitable volumes	Internal to habitable volumes		
Pressures and temperatures are a function of optimizing chemical reaction and system mass/power	Pressures based on cabin pressure; temperatures minimized for thermal control and touch		
Carbon dioxide/Carbon monoxide (CO ₂ /CO) processing	CO_2 processing reactors run hydrogen poor to mitigate H ₂		
reactors run hydrogen rich with H_2 recycling to maximize	leakage concerns		
CO ₂ /CO conversion			
Production and venting of CO allowed	Production of CO avoided due to toxicity risk		
Syster	n Design		
CO_2 Acquisition, CO_2 Processing, & H ₂ O Processing highly	Subsystems for ISS were designed and built seperately		
integrated (esp. thermally)			
Subsystems designed to operate all at the same time.	Subsystems for ISS operate at same or different times		
Separate subsystem operation or batch process a function			
of available power or CO_2 collection approach.			
Small amount of leakage acceptable	Leakage not acceptable because of habitable volume concerns		
Oxyge	n Storage		
Storage pressure optimized for system performance and liquefaction energy	Storage pressure for EVA portable life support system recharge		
Oxygen purity based on end user (propulsion, fuel cell, or life support	Oxygen purity based on crew		
Op	eration		
Operate continuously while power is available (sunlight or nuclear); minimize start-up/shutdown operations	Operate on as needed basis. Continuous if possible		
ISRU systems must be designed for minimum/no maintanace since operations often occur before crew arrives	Crew maintanance acceptable		

Integration and Operation with other Exploration Systems is critical

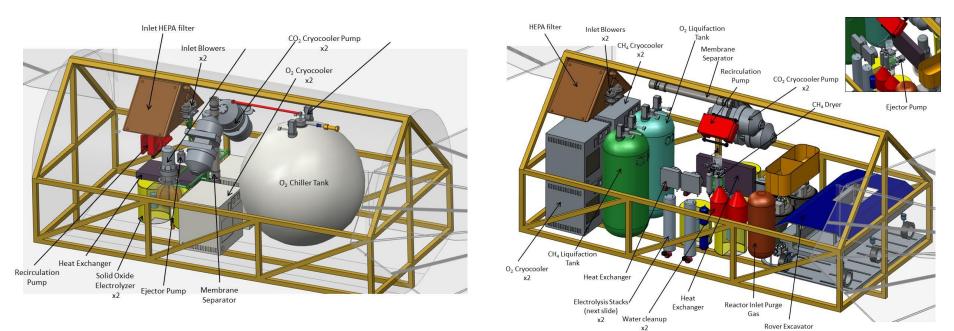

Early integrated ground development activities required to foster interaction

System Maturation Teams	Dependancies					
System Maturation Teams	Required From	Delivered To	Shared Areas of Interest			
EVA	Maintance and repair	Consumables (quality, type, amount)	CO ₂ and water management			
Human Robotic Mission Ops	Mobility, Manipulation	Requirements for mobility & manipulation	End effectors for civil engineering			
Crew Health & Protection	Requirements for radiation shielding	Approaches for radiation shielding	Radiation material effectiveness testing			
Autonomous Mission Ops	Autonomy, failure tolerance	Requirements	System and analog testing; precursors			
Communication & Navigation	Comm and nav.	Requirements	Comm time delay operations			
ECLSS & Env. Monitoring	Trash and waste feedstock	Consumables (quality, type, amount)	CO ₂ , water, and trash mgmt and processing			
Entry, Descent, and Landing	Landing accuracy for resource assessment	Aeroshell from space resources	Plume modeling & mitigation testing			
	Plume exhaust interaction with surface	Landing pads/berms				
Power & Energy Storage	Electrical (and thermal) energy	Fuel cell consumables. Energy generation &	Fuel cell reactant regeneration; solid oxide			
		storage from in-situ materials	fuel cells and water electrolzers			
Radiation	Requirements for radiation shielding	Approaches for radiation shielding	Radiation material effectiveness testing			
Thermal (incl. Cryo Fluid	Consumable liquefaction, storage, transfer;	Requirements; Waste heat; in-situ thermal	Lunar night and polar region survival and/or			
Management)	thermal management in shadowed regions	storage approaches	operation			
SKG Measurement Instruments &	Instruments/Data for Resource Assessment	Instruments/Data for Resource Assessment	Search for water and volatiles			
Sensors						
Fire Safety			Hazard mitigation and sensors			
Propulsion	Requirements for propellants	Consumables (quality, type, amount)	Propulsion, storage, and transfer testing			
ISRU						

MARCO POLO (Mars Atmospheric & Regolith COllector/PrOcessor for Lander Operations) is a combined Mars ISRU atmosphere & soil processing demonstration which includes a rover for excavation and science/prospecting.

- Dimensions = Modular; fit on top of 3 m diameter lander
- Ave. Power; >2000 W
- Production = Up to 0.5 kg O₂/hr

Can include science instruments



Mars Atmosphere Processing (O₂ only)

- Electrostatic precipitator w/ regenerative HEPA filter
- CO₂ collection (freezing)
- CO₂ processing: Solid Oxide Electrolysis
- CO/CO₂ separation and recycling to increase performance
- O₂ liquefaction
- O₂ storage

Mars Atm/Soil Processing (O₂/CH₄)

- Electrostatic precipitator w/ regenerative HEPA filter
- CO₂ collection (freezing)
- CO₂ processing: Sabatier Reactor
- Rover/Excavation
- Soil processing reactor (up to 450 C)
- Water separation/cleanup module
- Water electrolysis (Cathode Feed PEM)
- O₂ & CH₄ product dryer
- O₂ & CH₄ liquefaction & Storage

Mars Soil ISRU Demo

Mars Atm ISRU Demo

O ₂ Production rate: 0.45 kg/hr	Mass (kg)	Power (KW)	O ₂ Production rate: 0.48 kg/hr	Mass (kg)	Power (KW)
Filtration	1.23	0.00025	Rover Excavator**	170	
CO ₂ Collection/Freezer	173	2.23	Soil Processor & Water Cleanup	193	3.1
SOE Processor	5.6	3.7	Water Electrolysis (2)	40	2.8
SOE Recirculation system	34.6	0.187	O ₂ Dryer	4.1	0.064
O ₂ Liquefaction and Storage	70	0.6	O ₂ Liquefaction and Storage	72	0.7
Secondary Structure (15%)	42.7		Secondary Structure (15%)	71.9	
Solar Arrays (2)	45		Solar Arrays (2)	45	
Power conditioning/batteries*	TBD	TBD	Power conditioning/batteries*	TBD	TBD
Thermal Management/Radiators	TBD	TBD	Thermal Management/Radiators	TBD	TBD
Total	372.1	6.72	Total	596.0	6.66
Combined Atm/Soil ISRU Demo	_				
O ₂ Production rate: 0.48 kg/hr;	Mass (kg)	Power (KW)	CH₄: 0.12 kg/hr /		

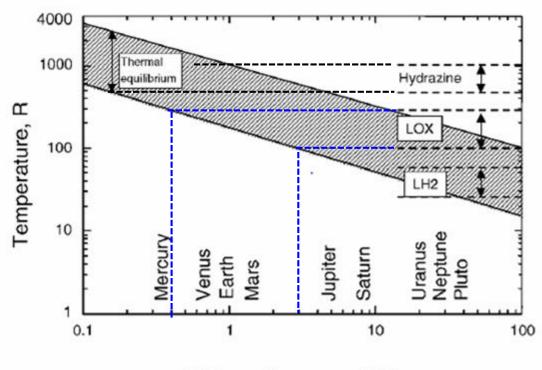
O ₂ Production rate: 0.48 kg/hr;	Mass (kg)	Power (KW)
Filtration	1.3	0.00025
CO ₂ Collection/Freezer	43	0.574
Sabatier Microchannel Reactor	1	0.082
Rover Excavator**	170	
Soil Processor & Water Separation	193	1.7
Water Capture/Temp Storage	3.7	0.5
Water Electrolysis (2)	40	2.8
O ₂ and CH ₄ Dryers	5	0.098
O ₂ Liquefaction and Storage	72	0.7
CH ₄ Liquefaction and Storage	58	0.42
Secondary Structure (15%)	88.1	
Solar Arrays (2)	45	
Power conditioning/batteries*	TBD	TBD
Thermal Management/Radiators	TBD	TBD
Total	720.1	6.9

Rover oversized for mission

	ISRU Plant Only			
	Atm	Soil	Combined	
Mass (kg)	246.59	272.67	330.05	
Power (KW)	6.12	5.96	5.75	

Rover not included

Human mission would include 3 units


*Mass and power available for batteries

**Rover not optimized for soil excavation or production rate

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov

Distance from sun, R/R_e

Fig. 9 Equilibrium temperature in space;⁷¹ limits of thermal equilibrium depend on insulation, absorptivity/emissivity, etc.

Oxygen and Methane are 'space' storage (i.e. heating or cooling is minimal to maintain its state) for the Earth, Moon, and Mars

⁷¹ Liquid Fuels and Propellants for Aerospace Propulsion: 1903–2003, Tim Edwards, U.S. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433-7103

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov