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Introduction 
• The detection of gravitational radiation will allow us to 

make astronomical observations otherwise unobtainable 
within the electromagnetic spectrum.  

• Currently operating ground-based interferometers are 
expected to make the first detection before the end of this 
decade. 

• Space-based interferometers operate in the mHz frequency 
band,  complementary to that of ground-based detectors 
and significantly richer of gravitational wave signals (both in 
number and strength). 

• Although the European eLISA mission is not expected to be 
launched before 2034, it is possible that a cheaper/smaller 
version of it might become operational by the middle of the 
next decade due to the significant cost-reductions 
experienced by both spacecraft  and launching vehicles. 

M. Tinto, D. DeBra, S. Buchman, S. Tilley, “gLISA: geosynchronous Laser Interferometer Space Antenna 

concepts with off-the-shelf satellites”, Review of Scientific Instruments, 86, 014501 (2015). MT - 2 



Introduction (cont.) 
• No matter which mission will eventually fly, its 

triangular configuration will not be exactly 
equilateral! 

• Unequal (and changing in time!) arm-lengths, 
together with large relative laser frequency shifts 
(due to inter-spacecraft relative velocities) will 
make the cancellation of the lasers and 
microwave phase noises a challenging task.   

• Use of the optical frequency comb technique for 
generating RF signals (coherent to their onboard 
lasers) significantly simplifies the onboard 
interferometry architecture and makes it more 
robust to subsystems failure. 
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• Gravitational waves are propagating variations of space-time. 
• They are consequence of the Equivalence Principle and of the 

fact that in Nature nothing propagates at a speed faster than 
the speed of light. 

• Their existence was first proved by accurately monitoring the 
change in the orbital period of a binary system containing a 
Pulsar (PSR 1913+16) (Hulse & Taylor, Nobel Prize, 1993) 

• We can attempt to detect them by monitoring relative changes 
in the frequency of coherent electromagnetic signals that 
propagate through space. 

• Since the relative frequency changes, Dn/n0, induced by a 
gravitational wave are proportional to the amplitude of the 
wave itself, h, any detector design must be built with a well 
defined frequency stability requirement.  

• All the instrumental frequency noises must be kept below a 
level determined by a characteristic wave amplitude whose 
magnitude has been predicted by theorists! 

What are Gravitational Waves? 
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Useful Formulas 
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Why we want to study GW in Space? 

• For a given energy-flux, at lower 
frequencies the strength of the signal 
is larger. 

• To avoid seismic noise, which affects 
ground-based detectors! 

• The number of known sources 
radiating in the mHz frequency band is 
very large. 



Statement of the problems 
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Time-delay Interferometry (TDI) 
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Moving…(cont.) 
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• The above equations do not allow us to simultaneously cancel 
p & q and retain the GW signal! 

• The LISA-solution to this problem involves generating side-
bands via modulation of the laser light to produce additional 
side-band-to-side-band heterodyne measurements. 

• One then has sufficient information for cancelling both p&q 
and retain the GW signal. 
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TDI with OFC 
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• An elegant alternative to the 
“modulation scheme” is to rely on the 
OFC technique! 

n0 



TDI…(cont.) 
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Conclusions 
• With the advent of self-referenced optical frequency 

combs, it is possible to generate a heterodyne 

microwave signal that is coherently referenced to the 

onboard laser.  

• In this case the microwave noise can be canceled 

directly by applying modified time-delay 

interferometric combinations to the heterodyne phase 

measurements. 

• This approach avoids the use of modulated laser 

beams as well as the need for additional ultra-stable 

oscillator clocks. 

• Nan Yu and I have been awarded a NASA APRA 

grant to test TDI with OFC. Stay Tuned! 
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