

Keck Institute for Space Studies workshop on frequency combs

Integrity ★ Service ★ Excellence

A Space Based Timing Infrastructure using Frequency Combs

Sept, 2015

John Burke, PhD Space Vehicles Directorate Air Force Research Laboratory

Clock Goals (from RFI's)

Launch and space survivable clock

Size and Power

	Size [L]	Pow [W]
Thresh.	50	30
Object.	6	15

Fractional Frequency Stability

Atomic Clocks Moving Forward

Optical

Transition

Both

Current GPS clocks: "Warm Atom - RF"

- Vacuum Tube technology
- · At theoretical limit
- Complex manufacturing

Cold Atom - RF (AFRL-NIST)

- ~10X Better performance
- Nobel Prize in Laser Cooling

Warm Atom - Optical (AFRL In-House)

- ~10X Better performance
- Leverage COTS Telecom components
- Noble Prize in Frequency Comb
- Simpler Manufacturing

Cold Atom - Optical

- ~1000X Better performance
- Most Complex, lowest TRL, highest SWaP

Distribution A: Public Release

2-Photon Optical Rubidium Atomic Frequency Standard (O-RAFS)

Current Status w/ Menlo comb

Cagnac et al Laser Physics Vol 6 No 2 (1996) Millerioux et al. Optics Comm. 108 pg 91-96 (1994)

Network of two way optical time transfer (2TT)

- Measure position and time of entire constellation without any atomic clocks in space
 - Satellite sets measure relative range and time
 - Propagate sync and map to constellation
 - Doppler?
- Optical atomic clocks on ground compare via network, update constellation
 - Optical clock comparisons across globe

AFRL starting 2TT ½ mile link

Eventually want to try balloon test: Small sat – sat test

Payload Size: about 10 cu ft

Giorgetta et al. Vol. 7 pg. 434-438, Nature Photonics (2013)

Fundamental physics with space clocks – Nathan Lemke

Absolute gravitational redshift

Expected redshift, to 1st order:

$$\frac{\nu_1 - \nu_2}{\nu} = \frac{U(r_2) - U(r_1)}{c^2}$$

RAFS O-RAFS

Lorentz Position Invariance

Use clocks to see if fundamental constants are coupled to gravity

$$\frac{\delta \nu}{\nu} = K \frac{\delta \alpha}{\alpha}$$

NIST comb

Awarded ~\$2.6M in SBIR contracts to transition Er based PM fiber comb

- -NP Photonics
- -Stable Laser Systems
- -Vescent Photonics

Outstanding Issues/unknowns

- Power Draw
 - Would like <30 Watt for whole system
 - Comb uses up the whole power budget
 - >20 Watts for pump diodes based on datasheets
 - FPGA Power?
- Radiation Effects in *PM* fiber
 - Need to take ~100's of krad (~10 krad/yr)

Radiation caveats

- Dose rate is highly variable
- Shielding can mitigate
- Radiation Spectrum
 - Most tests are with Co60, but there is large spectrum
- Detectors have different sensitivity than comb fiber

Buchs et al. Optics Express, vol 23, #8 (2015)

What do we know?

- Korean's tested SM Er fiber comb (20 Watt)
 - Weak link was Liekki Er80-4/125 SM gain fiber.
 - Around 30 krad TID
- Also they tested SESAM's to 120 krad
- CSEM group tested Yb based DPSS comb to 170 krad(H2O)

Infer that pump diodes aren't serious problem

What do we <u>not</u> know?

- PM fiber rumored to be more sensitive.
 - If true, worry about PM Liekki fiber
 - What about PM-HNLF?
- Will radiation cause PP-LN(KTP) waveguide degradation?

- Shake and vib?
- Need to survive 0.1 g^2/Hz from 100 to 1000 Hz?

Summary

- Frequency combs can enable new space clocks, improved GPS
- Can enable 2TT networks
 - global optical atomic clock comparison
 - Alternate GPS architectures
- We need lower power and higher radiation tolerance with certainty