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THE SOLAR GRAVITATIONAL LENS

A nice family portrait…

But…, is there anybody out there? 

“The Earth is the cradle of humanity, but mankind cannot stay in the cradle forever.”
Konstantin Tsiolkovsky
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Our Stellar Neighborhood within 100 ly
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The size does matter…

…and so does the distance: the tyranny of the diffraction limit…
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Our Challenge
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Largest telescopes to date…

But…, is there anybody out there? European Extremely Large Telescope
39 meters, Chile (est. 2022)

The largest telescopes for the last 125 years 
to date, both on the ground and in space
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Largest telescopes in space

Kepler
1.4 m
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1-pixel direct image of an exo-Earth…

The tyranny of  the diffraction limit: To make a 1-pixel image of an exo-Earth 

at 100 light years, a telescope with a diameter of ~90 km is needed… 

The altitude of  the Kármán line

JPL

90 km

Dana Point
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A (10k×10k)-pixels image of our Earth

This 2002 Blue Marble image features land surfaces, clouds, topography, 
and city lights at a maximal resolution of  1 km per pixel. 

Composed from 4 months data from NASA’s Terra satellite by R.Simmon, R.Stöckli.
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1,000-pixel direct image of an exo-Earth…

Diameter of 90,000 km is ~7 diameters of the Earth

The tyranny of  the diffraction limit: To make a 1,000-pixel image of an exo-Earth 
at 100 light years, a telescope with a diameter of ~90,000 km is needed… 

~90,000 km
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SGL enables direct multipixel imaging 

• Solar gravitational lens (SGL) offers:

– Magnification (at 1 um) ~2×10-11 & angular resolution: ~0.5 nanoarsec

• Overcoming the issue of a small target size:

– Consider an exo-Earth @ 30pc (100 l.y.) is ~1.4×10-11 rad; 

– A diffraction-limited telescope needed to resolve an object with this size at 
such distance must have a diameter of ~90 km; 

– To resolve the planet with 1,000 pixels one needs a telescope with a 
diameter of 90×104 km (or ~14 R⊕), which is impractical... 

– Even more challenging is the integration time needed to reach SNR=10: 

• a 50 m telescope would need an integration time of t ~ 106 years (zodi);

• with SGL’s light amplification (~2×109) we could do the job in ~3 month.

• Solving the parent start light contamination issue:

– Current exoplanet-imaging concepts detect light of a planet as a single pixel. 
Contamination from the parent star (~0.1" off the planet) is a major problem;

• Due to the high angular resolution of the SGL (~0.5 nas), the parent star 
is resolved from the planet with its light amplified 0.01 AU away from the 
optical axis, making the parent star contamination issue negligible. 
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Observing faint targets… 

~7 days

~15 days, 31.2 mag (1-!)
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Conventional techniques?

• Overcoming the issue of the long integration times:
– Let’s calculate integration time to get SNR = 10 on the longest baseline for an 

interferometer that resolved an object with 1,000 pixels across:

• exo-Earth @ 30pc is an object of 32.4 mag;

• background is 1 exo-zodi of 22 mag/arcsec2; 

• 10m space telescope(s) with perfect coronagraphs;

• max baseline ~45,000 km;

• integration time is t0 ~400 million years…

– Assume the interferometer is phased to < !/20 during the integration and the 
coronagraph suppresses the parent star to below the exo-zodi level:

• To image with 1,000 pixels (pixel = 47 mag), a million baselines are needed;

• If only 2 of 10m telescopes are available, multiply the above t0 by a million to 
get integration time of t ~ 4e14 years;  

• If more telescopes added, decrease integration time by # telescopes…

• Integration time decreases rapidly with D > 10m  as ~ D4;

– Array of 103 of 100 m telescopes would take t = 4e14/1e7 ~40 million years

1-m telescope at SGL (zodi & solar corona brightness): SNR = 10 in ~ few months
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Original gravity lens derivation (Einstein c.1911) 

Precision alignment between a Lens and the Earth is very unlikely…
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Gravitational deflection of light before GR

• In 1913 Einstein wrote to Hale:
– “Is eclipse necessary to test this prediction?” 
– Hale replied:  “Yes, an eclipse is necessary, as stars 

near the Sun would then be visible, and the bending 
of light from them would show up as an apparent 
displacement of the stars from their normal positions.” 

• In 1914, the first attempt - a German expedition
– A German astronomer Finley-Freundlich led an 

expedition to test the Einstein's prediction during a 
total solar eclipse on Aug. 21, 1914 (in Russia); 

– However, the First World War (July 28, 1914) 
intervened, and no observations could be made.

Albert Einstein 
c.1913

George Ellery Hale
(1868-1938)

Erwin Finlay-Freundlich
(1885-1964)

The Huntington Library, Pasadena, CA



The First Test of  
General Theory of  Relativity

Einstein and Eddington, Cambridge, 1930

Gravitational Deflection of  Light:

Campbell’s telegram to Einstein, 1923 

Deflection = 0;
Newton =  0.87 arcsec;   
Einstein = 2 x Newton = 1.75 arcsec 

Solar Eclipse 1919:
possible outcomes



Gravitational Deflection of Light
is a Well-Known Effect Today
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Our solar system and tests of gravity



THE SOLAR GRAVITATIONAL LENS

40+ Years of Solar System Gravity Tests

General relativity is now well tested. Can we use it to build something?

New Engineering Discipline –
Applied General Relativity:

Radar Ranging:
−Planets:  Mercury, Venus, Mars
−s/c: Mariners, Vikings, Pioneers, 

Cassini, Mars Global Surveyor, 
Mars Orbiter, etc.

−VLBI, GPS, etc.

Laser:
−SLR, LLR, interplanetary, etc.

Techniques for Gravity Tests:

Dedicated Gravity Missions:
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Spacecraft tracking ‘10
" − 1 ≤ 8×10()

"for decisive contributions to the LIGO detector 
and the observation of gravitational waves"

−LLR (1969 - on-going!!)
−GP-A,’76; LAGEOS,’76,’92; GP-B,’04; 

LARES,’12; MicroSCOPE,’16, ACES, 
‘18; LIGO,’16; eLISA, 2030+(?)

− Daily life: GPS, geodesy, time transfer; 
− Precision measurements, deep-space navigation & µas-astrometry (Gaia)
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Mission to the Gravity Lens of the Sun

Maccone C., many papers, 1999-present

– 29 –

Paczynski B., 1996, Ann. Rev. Astron. Astrophys., 34, 419
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This manuscript was prepared with the AAS LATEX macros v5.0.
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The Solar Gravitational Lens (KISS study, 2015)
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Optical properties of the SGL: caustic

Different regions of the SGL

Caustic formed behand the Sun

16

shadow region of interferenceregion of
geometric optics

focal line

FIG. 4: Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric
optics, and the region of interference.

Using (73) for ψ and relying on the properties of the hypergeometric function from Appendix C, especially (C4), we
can evaluate the integral:
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By taking the integration constant to be

c(r) = −ψ0 e
−ikr

1F1[1 + ikrg, 2, 2ikr] +O(r2g), (95)

we obtain the following expression for the Debye potential:
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which gives us the Debye potential of the incident wave in terms of the Coulomb wave function ψ, i.e., essentially in
terms of the confluent hypergeometric function [58, 59]. This solution is always finite and is valid for any angle θ.
As a result, the solution (96) for the Debye potential allows us to replace the first term in (89) and rewrite it as
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iu

k

1− cos θ

sin θ
eikz

(

1F1[1 + ikrg, 2, ikr(1− cos θ)]− 1F1[1 + ikrg, 2, 2ikr]
)

−

−E0
u

k2
1

r

kR⊙
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓH+

ℓ (krg, kr)P
(1)
l (cos θ) +O(r2g). (97)

This is our main result. It contains all the information about the EM field around the Sun in all the regions of
interest for the diffraction problem (see Fig. 4). We will evaluate the terms in this expression for each of these regions.

D. Solution to the diffraction problem and different regions

In order to understand the solution (97) that we obtained, we need more information on the second term in this
expression. Considering the region outside the Sun, r ≫ rg, we may replaceH+

ℓ (krg, kr) with its asymptotic expansion
(D16). Extending it to distances closer to the turning point, as derived in Appendix F and shown in (F16), we obtain
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Next, we use the asymptotic representation for P (1)
l (cos θ) from [35]:
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2 ) for 0 < θ < π. (99)
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Focal beam of extreme intensity

• Major brightness increase:                    
– For small departures from the 

optical axis, !, magnification  
of the SGL is:

– Max value of             is on axis:

– The gain is very sensitive to 

• motion in the image plane 

• along the optical axis

– If ! increases, gain decreases 
(while oscillating)

– For a fixed !, the gain slowly 
increases (while oscillating), 
while F is increasing Gain of the SGL as seen in the image plane as 

a function of possible observational wavelength

focal beam of 
extreme intensity
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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gravity field. This bending effect (towards the body) depend on the mass of the body M

and the light’s impact parameter b relative to the deflector. For the Sun this effect may be

expressed as:
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Turyshev & Toth, Phys. Rev. D 96, 024008  (2017)

Herlt & Stephani, IJMP 15, 45 (1976)
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Point spread function & gain of the SGL
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.

Across the image plane, the amplification oscillates quite rapidly. For small deviations from the optical axis, θ ≈ ρ/z.
Using this relation in (140), we see that the first zero occurs quite close to the optical axis:

ρSGL0 ≃ 4.5
( λ

1 µm

)

√

z

z0
cm, or, equivalently, ρSGL0 ≃ 4.5

( λ

1 µm

) b0
R⊙

cm. (142)

(Note in (142) the inverse ratio of z vs. z0 and b0 vs R⊙.) Equation (142) favors larger wavelengths and larger
heliocentric distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of the solar gravitational lens. By achromatically focusing

light from a distant source [17, 34], the SGL provides a major brightness amplification and extreme angular resolution.
Specifically, from (135) for λ = 1 µm, we get a light amplification of the SGL of µ ≃ 1.2 × 1011, corresponding to a
brightness increase by δmag = 2.5 lnµ = 27.67 stellar magnitudes in case of perfect alignment. Furthermore, (140)
gives us the angular resolution of the SGL of θSGL ≃ 1.1× 10−10 arc seconds.
We note that if the diameter of the telescope d0 is larger than the diffraction limit of the SGL (i.e., larger than the

diameter of the first zero of the Airy pattern), it would average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the aperture of the telescope:
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4

πd20

∫
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2

0

∫ 2π
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(
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√

2rg
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)

+ J2
1

(

π
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λ

√

2rg
z

)}

. (143)

For an aperture of d0 = 1 m at z = 600 AU, this results in the reduction in light amplification by a factor of 0.025,
leading to the effective light amplification of µ̄z = 2.87 × 109 (i.e., 23.65 mag), which is still quite significant. The
effect of the large aperture is captured in Fig. 9, where we plot the behavior of each of the two terms in curly braces
in (143) and also their sum. Although each term oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant target fills an annulus at the edge of the Sun, forming the

Einstein ring. At a distance z on the focal line, an observer looking back at the Sun will see the Einstein ring with an
angular size that is given by αER = 2b0/z = 4rg/b0. Using this equation, we determine the angular size of the ring as

αER ≃ 3.50′′
√

z0
z
, or, equivalently, αER ≃ 3.50′′

R⊙

b0
. (144)

A telescope with aperture d0, placed at the heliocentric distance z on the optical axis, receives light from a family of
rays with different impact parameters with respect to the Sun, ranging from b0 to b0 + δb0. Using (144), these rays
are deflected by different amounts given as α1 = (b0+

1
2d0)/z = α0R⊙/(b0+

1
2d0), for one edge of the aperture, where

α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.

Across the image plane, the amplification oscillates quite rapidly. For small deviations from the optical axis, θ ≈ ρ/z.
Using this relation in (140), we see that the first zero occurs quite close to the optical axis:

ρSGL0 ≃ 4.5
( λ

1 µm

)

√

z

z0
cm, or, equivalently, ρSGL0 ≃ 4.5

( λ

1 µm

) b0
R⊙

cm. (142)

(Note in (142) the inverse ratio of z vs. z0 and b0 vs R⊙.) Equation (142) favors larger wavelengths and larger
heliocentric distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of the solar gravitational lens. By achromatically focusing

light from a distant source [17, 34], the SGL provides a major brightness amplification and extreme angular resolution.
Specifically, from (135) for λ = 1 µm, we get a light amplification of the SGL of µ ≃ 1.2 × 1011, corresponding to a
brightness increase by δmag = 2.5 lnµ = 27.67 stellar magnitudes in case of perfect alignment. Furthermore, (140)
gives us the angular resolution of the SGL of θSGL ≃ 1.1× 10−10 arc seconds.
We note that if the diameter of the telescope d0 is larger than the diffraction limit of the SGL (i.e., larger than the

diameter of the first zero of the Airy pattern), it would average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the aperture of the telescope:

µ̄z =
4

πd20

∫

d0
2

0

∫ 2π

0
µ(ρ)ρd0ρd0φ =

4π2

1− e−4π2rg/λ

rg
λ

{

J2
0

(

π
d0
λ

√

2rg
z

)

+ J2
1

(

π
d0
λ

√

2rg
z

)}

. (143)

For an aperture of d0 = 1 m at z = 600 AU, this results in the reduction in light amplification by a factor of 0.025,
leading to the effective light amplification of µ̄z = 2.87 × 109 (i.e., 23.65 mag), which is still quite significant. The
effect of the large aperture is captured in Fig. 9, where we plot the behavior of each of the two terms in curly braces
in (143) and also their sum. Although each term oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant target fills an annulus at the edge of the Sun, forming the

Einstein ring. At a distance z on the focal line, an observer looking back at the Sun will see the Einstein ring with an
angular size that is given by αER = 2b0/z = 4rg/b0. Using this equation, we determine the angular size of the ring as

αER ≃ 3.50′′
√

z0
z
, or, equivalently, αER ≃ 3.50′′

R⊙

b0
. (144)

A telescope with aperture d0, placed at the heliocentric distance z on the optical axis, receives light from a family of
rays with different impact parameters with respect to the Sun, ranging from b0 to b0 + δb0. Using (144), these rays
are deflected by different amounts given as α1 = (b0+

1
2d0)/z = α0R⊙/(b0+

1
2d0), for one edge of the aperture, where

α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
E2

0
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
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0
4π2

1− e−4π2rg/λ
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)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
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1− e−4π2rg/λ
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)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.

3-D Airy pattern of the SGL

Turyshev & Toth, Phys. Rev. D 96, 024008  (2017)
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The image in a form of the Einstein ring

Credit: ESA, Hubble & NASA Wikimedia
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Properties of the Solar Gravity Lens

• Important features of the SGL (for ! = 1 "m):
– Major brightness magnification: a factor of 1011 (on the optical axis);
– High angular resolution:  ~0.5 nano-arcsec. A 1-m telescope at the SGL 

collects light from a ~(10km × 10km) spot on the surface of the planet, 
bringing this light to one 1-m size pixel in the image plane of the SGL;

– Extremely narrow “pencil” beam: entire image of an exo-Earth (~13,000 km) 
at 100 l.y. is included within a cylinder with a diameter of ~1.3 km.

• Collecting area of a 1-m telescope at the SGL’s focus:
– Telescope with diameter d0 collects light with impact parameters #b≃d0;
– For a 1-m telescope at 750AU, the total collecting area is: 4.37×109 m2, 

which is equivalent to a telescope with a diameter of ~80 km… 

telescope
image

Sun

impact 
parameter
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Do not point at the Sun!!!!

Granulation 
of solar surface

A solar flare

Coronal 
mass ejection
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Effects of gravity & solar plasma

• , 

Sun Shadow

Incident plane wave

Sun Shadow

Incident plane wave

Sun Shadow

Incident plane wave

Sun Shadow

Incident plane wave

No gravity, no plasma Plasma, no gravity

Gravity, no plasma Gravity and plasma
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Solar corona brightness
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The instrumental design

• The instrument: 
– A diffraction-limited high-resolution spectrograph, enabling Doppler 

imaging techniques;
• The SGLF telescope needs a coronagraph to block the Sun’s light: 

– To block the solar light to the level of solar corona;
– At 1 µm, the gain of the SGL is ~110dB (27.5 mag), so an exoplanet, 

which is 32.4 mag object, will become a ~4.9 mag object;
– When averaged over a 1m telescope (the gain is ~2×109), it would be 

9.2 mag, which is sufficiently bright (even on the solar background);
– To derive an image with the SGLF, including solar corona brightness 

(the parent star will be resolved), zodiacal light, instrument, and s/c 
systematics;

• Perhaps several small spacecraft? 
– We could rely on a swarm of small spacecraft, lunched together each 

moving at a slightly different trajectory parallel to the optical axis. 
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Coronagraph study: sun disc & solar corona

• Contrast @ E-ring: 2e-7 
– w/o corona: 1.4e-7

• E-ring planet core PSF 
throughput: ~ 10%
– Lyot + Occulter

over +/- l/D

2e-7 NI at E-ring 
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Albedo model high resolution map
Deep Space Climate Observatory (NOAA, Feb. 11, 2015):
Earth Polychromatic Imaging Camera (EPIC)
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Rotational deconvolution

High SNR allows for 

• High-resolution 
spectroscopy

• Allows reconstruction 
of a 2-D albedo map 
from annual variation 
of the disk-integrated 
scattered light using 
technique of spin-orbit 
tomography (i.e., 
rotational 
deconvolution)

• Next step is a direct 
deconvolution
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Image formation by the SGL

• – impact parameter, 
• – – distance in the image plane, 
• – 2D convolution operator.Accretion disk around a black hole as a test 

object for convolution by the PSF of the SGL.

Image obtained after convolution. Photon 
noise is added, corresponding to 100 ph/pixel

De-convolved image using the SGL’ PSF. Low-
pass filtering in spatial frequencies is applied

L. Koechlin et al., Exp Astron (2005) 20:307–315
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The a priori properties of the target

• We want to image Earth 2.0, around a G star, which is not transiting: 
– Once habitability is confirmed (“big TPF” for spectra), the next step is to image it. 

• We will rely on astrometry, RV, spectroscopy, and direct imaging to obtain: 
– orbital ephemeris: to ~mas accuracy and precision; 
– rotation: from temporal monitoring of the spectroscopy;
– atmosphere: temperature, structure, chemical composition, and albedo, from non-

spatially-resolved spectroscopy; 
– understanding of cloud & surface properties from Doppler imaging. 

• This information will help us to point the s/c: 
– Time to reach 550 AU ~10 years, enough to observe the parent star’s location 

~100 times with 1 !as precision, so that its position would be known to 0.1 !as;
– The parent star’s position would be known to ~45 km at a distance of 30 pc;
– Orbital period to <1%  ⇒ the semi-major axis is known to ~0.7% (~1 million km);  
– If face-on, the radial distance to ~1 million km, with tangential error ~6 larger;
– Earth’s diameter is 13,000 km, so we will search the (80 × 500) grid on the sky; 
– Once SGLFM detects the planet ⇒ scan a smaller area to define the “edges”. 
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Imaging with SGL 

• Imaging is done on a pixel-by-pixel basis: 
– The image of an exo-Earth occupies ~(1.3km×1.3km) area from the optical axis.  

– Each pointing corresponds to a different impact parameter: 1 image ⇔ 1 pixel. 

– Between the adjacent pixels the impact parameter changes, brings light from 
adjacent surface areas on the planet ⇒ a raster scan moving the spacecraft; 

– To build a (103×103) pixels image, we would need to sample the image pixel-by-
pixel, while moving in the image plane with steps of ~1 km/103 = 1 m:

• Pointing: Inertial navigation and 3 laser beacon spacecraft in heliocentric 
orbit in the plane of the Einstein’s ring (for precision pointing & comm). 

– Contamination from the parent star is negligible for an SGL scenario. 

• Exoplanet imaging requires several key technologies that are challenging:
– determination of an exoplanet astrometric orbit at ~10 nas, 

– motion & stabilization of the s/c over millions of pointings with limited power.  

• Perhaps even spectroscopy or even spectro-polarimetry of the exoplanet?  
– Potentially a spectrally resolved image over a broad range of wavelengths: 

atmosphere, surface material characterization, biological processes.
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The solar wobble

Astrometric displacement of the 
Sun due to Jupiter as at it would 
be observed from 10 parsecs, 
or about 33 light-years.

Center of the Sun shown as dots monthly from 
1944 to 2020 with actual size of the sun shown 
at its average position, during this time period
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Trajectories (Measure vs Control)

• Pointing precision (between three objects): 
– Needs to be maintained to ~ few !as for proper operation of the SGL. 
– Knowledge is needed at 1 !as level, control is at the ~100 !as.  
– The motion is unfortunately complex (1-m of motion at 600 AU ~ 1 !as 

of angle seen from Earth)
• Simple motions (straight lines):

– Motion of the target star around the galaxy; the Sun around the galaxy  
• More complex motions:

– Motion of the exoplanet around its host star (Keplerian)
– Motion of our Sun around the solar system barycenter.

• Dominated by the orbits of Jupiter, Saturn.
• Jupiter ⇒ 75 million m motion of the Sun (12yr orbit)
• Saturn ⇒ 50 million m of motion of the Sun (29 yr)
• Earth   ⇒ 450,000 m (1 yr)

• Propulsion system must compensate for the reflex motion of the Sun 
– Due to most of the planets in the solar system. (perhaps many of the big 

asteroids in the main belt) Uranus and Neptune’s motion over a short 
time may be just a straight line (need to calculate for sure).



Direct Multipixel Imaging and Spectroscopy of an Exoplanet 
with a Solar Gravity Lens Focus (SGLF) Mission

Concept
• SGLF provides a major gain (~1011 at 1um), 

resolution of 10-9 arcsec in a narrow FOV; 
• A 1-m telescope at ~750AU has a collecting 

area equivalent ~80 km aperture in space;
• A mission to the SGLF could image Earth 2.0 

up to 30pc away with resolution to ~10km to 
see surface features; 

• A small s/c with electric propulsion (or solar 
sails) can reach the SGLF in <35-40 yrs.

Proposed Study and Approach
• Define baseline design, sub-syst components;
• Define mission science goals & requirements;
• Develop system and subsystem requirements;
• Study mission architecture and con-ops;
• Assessment of feasibility (cluster) small-sats; 
• Identify technology development needs; 
• Study instruments & systems: power, comm, 

pointing, s/c, autonomy, coronagraph, nav, 
propulsion, raster scan in the image plane, etc.

Benefits
• A breakthrough mission concept to resolve a 

habitable exoplanet at modest cost/time;
• Could find seasonal changes, oceans, 

continents, life signatures on an exo-Earth;
• Small-sat & fast exit from the solar system;
• Electric propulsion for raster-scanning the 

image using tethered s/c (or cluster); 
• SLGF is valuable for other astrophysics and 

cosmology targets. Earth with resolution of (1000 × 1000) pixels.

An imaging mission to SGLF appears to be feasible, but needs further study
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If successful, the concept will enable wholly new missions, offer
a significant advantage to previously studied work, or provide a
great leap in capabilities for NASA or the greater aerospace
community. Based on results from the Phase I study, the concept
continues to generate enthusiasm for a mission and potential to
build advocacy to support it within NASA or in the greater
aerospace community.

The concept continues to demonstrate unexplored and exciting
aspects of value to investigate over the Phase I study. Analysis
completed in Phase I is credible. However, unknowns remain
that are not readily determined, thereby warranting further
study.

Comments on NIAC Phase II proposal (March 2018):


