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Tidal energy dissipation

❖ Tidal energy dissipation affects the 
thermal, rotational, and orbital evolution 

❖ Subsurface oceans are common on icy 
satellites 

❖ Earth: most of the tidal energy is 
dissipated in the oceans 

❖ Does ocean dissipation also dominate 
tidal energy dissipation in icy satellites?  

❖ What is the the spatial and temporal 
variation of ocean tidal heating?

Solid Earth
5%

Oceans
95%

Earth’s tidal energy dissipation 

Solid Earth: ~ 100 GW (Ray et al. 2001) 
Oceans: ~ 2 TW (Egbert & Ray 2000)



Fig. 2. Top view, reference frame 
rotating with the satellite in 

synchronous rotation

Tides due to orbital eccentricity

Fig. 1.  Top view, eccentric orbit

Fig. 3. Tidal potential, reference frame rotating with the 
satellite in synchronous rotation



Tides due to obliquity

Fig. 2. Side view, reference frame 
rotating with the satellite in 

synchronous rotation

Fig. 1. Side view, satellite with non-zero 
obliquity

Fig. 3. Tidal potential, reference frame rotating with the 
satellite in synchronous rotation



Surface Oceans

❖ Mass conservation:
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 

❖ Momentum conservation: ∂tu + 2Ω × u + αu +
cD

ho
|u |u = −

1
ρo

∇P + ∇U

❖ Laplace tidal equations describing ocean tides in a thin, incompressible 
surface ocean

∂tho + ∇ ⋅ (hou) = 0 dissipation

❖ Linear drag: internal wave generation over rough topography in the deep 
ocean

❖ Earth: 𝛼~10-5 s-1 (Webb, 1980; Egbert and Ray, 2000, 2001), subject of 

ongoing research (Green and Nycander, 2013).

❖ Possible to obtain semi-analytic solutions (Tyler, 2011; Chen et al., 2014; 

Matsuyama, 2014; Beuthe, 2016)

❖ Non-linear bottom drag: friction in a turbulent boundary layer at the solid fluid-interface

❖ A nominal value cD~2x10-3 (has been assumed to model tidal heating on


❖ Earth (Lambeck, 1980; Jayne and Laurent, 2001; Egbert and Ray, 2001, Green and 
Nycander, 2013)


❖ Titan (Sagan & Dermott, 1982; Sohl et al. 1995)

❖ Jovian planets (Goldreich & Soter, 1966)


❖ Non-linear nature requires numerical solutions (Sears 1995; Chen & Nimmo, 2014; Hay & 
Matsuyama 2016)
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 

❖ Momentum conservation: ∂tu + 2Ω × u + αu +
cD

ho
|u |u = −

1
ρo

∇P + ∇U

❖ Laplace tidal equations describing ocean tides in a thin, incompressible 
surface ocean

∂tho + ∇ ⋅ (hou) = 0

dissipation

❖ Linear drag, non-linear bottom drag

P = ρog(rt + ηt − r)❖ Pressure: 

❖ Forcing potential: U

Fdiss = αρohou ⋅ u + cDρo (u ⋅ u)3/2
❖ Energy dissipation per unit time and surface area: 



Surface oceans: Forcing Potential

Tide raising 
primary 

U = UT U = (1 + kT)UT

+deformation of the 
satellite in response to UT

δR = hTUT /g

U = (1 + kT)UT + (1 + kL)UL

+deformation of the 
satellite in response to UL

δR = hTUT /g + hLUL /g

U = (1 + kT)UT + UL

+additional potential 
due to ocean tides UL

δR = hTUT /g



∂tu + 2Ω × u + αu +
cD

ho
|u |u = − g(1 − ξγL)∇η + γT ∇UT

ξ ≡
3

2n + 1
ρo

ρ̄

γL ≡ 1 + kL − hL

γT ≡ 1 + kT − hT

Additional potential due to 
ocean tides (UL): UL = gξη,

Deformation of the satellite in 
response to UT:

Deformation of the satellite in 
response to UL:
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 

❖ Momentum conservation:

❖ Laplace tidal equations describing ocean tides in a thin, incompressible 
surface ocean

∂tho + ∇ ⋅ (hou) = 0

Fdiss = αρohou ⋅ u + cDρo (u ⋅ u)3/2
❖ Energy dissipation per unit time and surface area: 



Surface Oceans: equilibrium tide

u = 0

η = ηeq ≡
γT

(1 − ξγL)
UT

g

η = ηeq

❖ Equilibrium tides (u=0):

❖ Dynamic tides (u≠0)

∂tu + 2Ω × u + αu +
cD

ho
|u |u = − g(1 − ξγL)∇η + γT ∇UT

❖ Mass conservation:

❖ Momentum conservation:

❖ Laplace tidal equations describing ocean tides in a thin, incompressible 
surface ocean

∂tho + ∇ ⋅ (hou) = 0



Enceladus: Surface Ocean Dissipation

❖ Ocean dissipation can be resonantly enhanced (Tyler 2008, 2009,  2011; Matsuyama, 2014; Hay & Matsuyama, 
2016)


❖ But resonances correspond to very thin oceans


❖ Obliquity tidal heating << eccentricity tidal heating due Enceladus’ small obliquity (Chen & Nimmo, 2011; Chen et 
al. 2014)


❖ e=0.0047, obliquity=0.00045 deg assuming a Cassini state (Chen & Nimmo, 2011; Baland et al. 2016)

H.C.F.C. Hay, I. Matsuyama / Icarus 281 (2017) 342–356  351 

Fig. 8. Time and surface averaged ocean dissipation for Enceladus under the eccentricity (left) and obliquity (right) tides when applying Rayleigh drag. The logarithm of 
dissipated energy is shown as function of ocean thickness, h 0 , and bottom drag coefficient, c D . All simulations were performed with 1 ° to 3 ° grid resolution. 

Fig. 9. As for Fig. 8  , but for the bottom drag regime. The obliquity tide is also ig- 
nored. 

Bottom drag results for the eccentricity tide on Enceladus are 
shown in Fig. 9  . The gravity-wave resonances are found at identi- 
cal ocean thicknesses to the Rayleigh drag results in Fig. 8  a. There 
is, however, a much greater contrast in dissipation magnitude in 
this parameter space when compared to the Rayleigh drag regime. 
Dissipation drops off rapidly by many orders of magnitude with 
increasing ocean thickness away from the h 0 = 360m resonance. 
This is expected given the velocity squared dependence and in- 
verse proportionality to ocean thickness in the bottom drag term 
in Eq. (2) . 
4.3. Comparison with scaling laws 

The bottom drag eccentricity tide results for Enceladus are com- 
pared to Chen et al. (2014) scaling laws in Fig. 10 . As was the case 
with Titan, we find poor agreement for resonant ocean configu- 
rations, with increasingly good agreement away from resonances. 
The scaling laws cannot take into account the resonant ocean con- 
figurations due to the non-linearity of these features. However, 
the general trend of decreasing dissipation with increasing ocean 
thickness is captured by the scaling laws and agrees well with our 
numerical results. This agreement provides further verification to 
the numerical model and techniques employed in this work. 

Fig. 10. Comparison of the ODIS numerical results (solid lines) and those calculated 
using the scaling laws (dashed lines) derived in Chen et al. (2014) , for Enceladus 
under the eccentricity tide. The colours represent different values of bottom drag 
coefficient. 
4.4. Implications for Enceladus 

Eccentricity is the only significant contributor to ocean dissipa- 
tion in Enceladus. Under both Rayleigh and bottom drag, the great- 
est ocean thickness that corresponds to a gravity-wave resonance 
can easily account for the observed SPT power output ( Howett 
et al., 2011; Spencer et al., 2006; 2013 ). However, this resonant 
ocean is still relatively thin. Of course, Enceladus’ ocean thickness 
is unconstrained, although non-unique gravity modelling is consis- 
tent with an ocean on the order of 10 km thick, at least under the 
SPT ( Iess et al., 2014 ). Thus, based on our results, we expect that 
ocean dissipation is insignificant over long time scales for Ence- 
ladus. 

The amplitude of forced libration on Enceladus ( Thomas et al., 
2016 ), as well as the negative mass anomaly observed at the SPT 
( Iess et al., 2014; McKinnon, 2015 ) indicate that its subsurface 
ocean is global in extent and deeper beneath the SPT. This vari- 
able ocean thickness is neglected in our model, and may lead to 
localised heating at the boundary between thin and thick oceans. 
The effect on resonance ocean configurations is unknown. Incor- 

Hay & Matsuyama et al. 2016
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❖ Mass conservation:

❖ Momentum conservation:

∂tu + 2Ω × u + αu +
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❖ Modified Laplace tidal equations (LTE) describing ocean tides in a thin, incompressible subsurface ocean

∂tho + ∇ ⋅ (hou) = 0
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 

radial stress at the shell-ocean boundary 
due to tidal (T) and dynamic pressure (P) 
forcing

\

❖ Use tidal and pressure Love numbers to describe the static and dynamic parts of the deformation 
in response to tidal forcing.
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❖ Mass conservation:

❖ Momentum conservation:

∂tu + 2Ω × u + αu +
cD

ho
|u |u = − gβ ∇η + υ∇UT

❖ Laplace tidal equations describing ocean tides in a thin, incompressible surface ocean

∂tho + ∇ ⋅ (hou) = 0
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 

Fdiss = αρohou ⋅ u + cDρo (u ⋅ u)3/2
❖ Energy dissipation per unit time and surface area: 

❖ Linear drag (Beuthe 2016; Matsuyama et al. 2018) and non-linear bottom 
drag (Hay & Matsuyama, 2019)
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Fig. 1. Comparison of radial displacements for (a) surface and (b) subsurface 
oceans. In both cases, the ocean thickness is h o , and the radial tide η is defined as 
the difference between the radial displacement at the top and bottom of the ocean, 
η ≡ ηt − ηb . For a surface ocean, the ocean bottom radius is the surface radius R 
and the ocean top is R + h o . For a subsurface ocean, the ocean top and bottom radii 
are related by r t = r b + h o , the surface and ocean top radii are related by R = r t + h s , 
where h s is the overlying shell thickness, and the radial tide at the surface is ηR . 

The time-dependent part of the tidal forcing potential contains 
eccentricity and obliquity contributions, U T = U T ecc + U T 

obliq , where 
U T ecc = "2 r 2 e { 

− 3  
2 P 20 ( cos θ ) cos ("t) 

+ 1 
8 P 22 ( cos θ ) [ 7 cos (2 φ − "t) − cos (2 φ + "t) ] } 

U T obliq = 1 
2 "2 r 2 θ0 P 21 ( cos θ ) [ cos (φ − "t) + cos (φ + "t) ] (5) 

to lowest order in eccentricity, e , and obliquity, θ0 ( Tyler, 2011 ). Ec- 
centricity forcing causes the total tidal bulge (static part included) 
to librate in longitude and to vary in amplitude, and obliquity forc- 
ing causes the tidal bulge to librate in latitude, producing time- 
varying ocean tides. We only consider n = 2 contributions and ig- 
nore higher order terms because the forcing tidal potentials scale 
with ( r / a ) n and r ≪ a , where a is the semi-major axis of the satel- 
lite. The obliquities of Enceladus and Europa are not directly con- 
strained by observations. We assume obliquities of 4 . 5 × 10 −4 ◦ and 
0.1 ° for Enceladus and Europa, respectively, under the assumption 
that tidal energy dissipation has driven the obliquities to Cassini 
state values ( Bills, 2005; Chen and Nimmo, 2011; Baland et al., 
2016 ). 

We extend the method of Longuet-Higgins (1968) to solve the 
mass and momentum conservation equations for a thin ocean 
with an overlying incompressible elastic shell of arbitrary thickness 
( Appendix C ). This requires ignoring bottom ( c D = 0 ) and Navier–
Stokes ( ν = 0 ) drag, and in this case the dissipated energy per unit 
surface area and time is 
F diss = −ρo h o αu · u . (6) 
Earth’s ocean tidal heating studies consider both linear and bot- 
tom friction drag formalisms. Egbert and Ray (20 0 0, 20 01) as- 
sume linear drag with α′ = αh o ∼ 0 . 03  m s −1 , which yields α ∼
10 −5 s −1 assuming an average Earth ocean thickness h o ∼ 4 km. 
Webb (1980) assume α ∼ 1/ τ with τ ∼ 24 − 60 h, which also yields 
α ∼ 10 −5 s −1 . The bottom drag formalism is based on the as- 
sumption that drag arises due to turbulent flow interacting with 
a bottom boundary. A nominal bottom drag coefficient ∼ (2 − 3 ) ×
10 −3  has been assumed to model tidal heating in the Earth (e.g., 
Lambeck, 1980; Jayne and St Laurent, 2001; Egbert and Ray, 2001; 
Green and Nycander, 2013  ), Titan ( Sagan and Dermott, 1982 ), and 
Jovian planets ( Goldreich and Soter, 1966 ). We can estimate a cor- 
responding linear drag coefficient by comparing the energy flux 
due to linear drag ( Eq. (6) ) with the energy flux due to bottom 
drag, F diss = ρo c D ( u · u ) 3  / 2 . This order-of-magnitude estimate yields 

c D ∼ α3  / 2 (ρo h 3  o 
F diss 

)1 / 2 
. (7) 

There are no constraints for the linear or bottom drag coefficients 
in icy satellites; therefore, we consider a large range of possible 
values. Using the tidal heating fluxes in Section 3  and the nominal 
value c D ∼ 10 −3  , this estimates yields α ∼ 10 −11 s −1 for eccentric- 
ity and obliquity forcing on Enceladus, α ∼ 10 −10 s −1 for eccentric- 
ity forcing on Europa, and α ∼ 10 −9 s −1 for obliquity forcing on 
Europa. We adopt these values as lower limits and the Earth value, 
α ∼ 10 −5 s −1 , as an upper limit. 

Tidal heating in the solid regions of a satellite is commonly 
quantified by a tidal quality factor defined as Q ≡ 2 πE max / E diss , 
where E max is the maximum energy stored in the tidal deforma- 
tion and E diss is the energy dissipated in one cycle. For dissipa- 
tion in solid regions, it is possible to calculate the elastic en- 
ergy stored due to tidal deformation and the corresponding Q . For 
ocean energy dissipation, however, tidal deformation does not pro- 
duce elastic energy. It is possible to introduce a tidal quality fac- 
tor Q ≡"/(2 α) for ocean tidal heating by redefining E max as the 
maximum kinetic energy of the ocean ( Tyler, 2011 ). This definition 
has been used in previous ocean tidal heating studies ( Tyler, 2011; 
Matsuyama, 2014; Chen et al., 2014; Beuthe, 2016 ). However, it can 
lead to counter-intuitive results such as decreasing energy dissipa- 
tion with decreasing Q ( Appendix D ) because the kinetic and dis- 
sipated energies are coupled ( Matsuyama, 2014 ). Although we can 
introduce an alternative definition of Q that is physically more in- 
tuitive ( Appendix D ), we do not favor its use because Q is not a 
fundamental quantity, but a phenomenological factor whose defi- 
nition depends on the particular context. This can introduce sig- 
nificant errors even when considering solid tides. For example, the 
neglect of self-gravity and hydrostatic pre-stress in the traditional 
relationship between Q and the tidal phase delay can lead to order 
of magnitude errors ( Zschau, 1978 ). The relevant quantity for com- 
puting the effect of tidal heating on the thermal, rotational, and 
orbital evolution is the energy dissipation rate and our thick shell 
theory provides a method for computing it. 

The mass and momentum conservation equations (1) and (2) , 
and the energy dissipation equation (6) are applicable to both sur- 
face and subsurface oceans; however, the pressure and forcing po- 
tential terms in the momentum conservation equation are different 
for each case, as described in Sections 2.1 and 2.2 below. 
2.1. Surface oceans 

For surface oceans, the pressure at a reference radius r in 
the ocean is P = ρo g(r t + ηt − r) , where r t ≡ R + h o is the constant 
ocean top radius ( Fig. 1 (a)) and we assume a constant gravitational 
acceleration g in the ocean, as expected for a thin ocean. Thus, the 
pressure gradient term in the momentum conservation equation 
(2) is 
−∇P 

ρ0 = −g∇ηt , (8) 
where we ignore density and gravitational acceleration variations. 
The former is justified by the assumption of an incompressible 
ocean, and the latter is justified by the assumption of small am- 
plitude tides ( η ≪ R ). 

The total forcing tidal potential is given by 
U nm = [1 + k T n (R ) ]U T nm + [1 + k L n (R ) ]U L nm , (9) 
where we expand the potential U in spherical harmonics U nm and 
take into account the effects of ocean self-gravity and deforma- 
tion of the solid regions using Love number theory ( Hendershott, 
1972; Matsuyama, 2014 ). The tidal Love number k T n describes the 
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Figure 4: Ocean tidal heating power in Enceladus due to eccentricity and obliquity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are thin shell approximation solutions (Beuthe, 2016), and bottom panels show the di↵erence between the two
solutions. Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The shaded gray region
corresponds to the observational constraint of 3.9 � 18.9 GW, and the solid horizontal black line is the estimated
radiogenic heating power (0.3 GW). We assume the interior structure parameters in Table 1.
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Figure 5: Europa’s ocean tidal heating power due to the obliquity and eccentricity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are rescaled surface ocean solutions (Eq. (26)), and bottom panels show the di↵erence between the two solutions.
Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The solid horizontal black line is
the estimated radiogenic heating power (200 GW). We assume the interior structure parameters in Table 1.

13

������������ 	
����� �������� 	
�����
� 

�=
��

-�
�-

�

��-� ��-� ��-� ��� ��� ���

���

���

��
�
��

(�
�
)

��-� ��-� ��-� ��� ��� ���

���

���
hs=0 km
hs=1 km
hs=10 km
hs=25 km
hs=50 km

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)
��
��
�(
%
)

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)
� �

�=
��

-�
�-

�

��-� ��-� ��-� ��� ��� ���

���

���

��
�
��

(�
�
)

��-� ��-� ��-� ��� ��� ���

���

���
hs=0 km
hs=1 km
hs=10 km
hs=25 km
hs=50 km

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)

��
��
�(
%
)

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)
� 	

�=
��

-�
�-

�

��-� ��-� ��-� ��� ��� ���

���

���

��
�
��

(�
�
)

��-� ��-� ��-� ��� ��� ���

���

���
hs=0 km
hs=1 km
hs=10 km
hs=25 km
hs=50 km

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)

��
��
�(
%
)

��-� ��-� ��� ��� ���
��-�
���

���

����� �	
������ (�)

Figure 5: Europa’s ocean tidal heating power due to the obliquity and eccentricity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are rescaled surface ocean solutions (Eq. (26)), and bottom panels show the di↵erence between the two solutions.
Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The solid horizontal black line is
the estimated radiogenic heating power (200 GW). We assume the interior structure parameters in Table 1.
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❖ Core density is adjusted to satisfy the mean density constraint

❖ The effect of an overlying shell is smaller for Europa (due to its small effective rigidity)

❖ The shell’s resistance to ocean tides increases with shell thickness, reducing tidal heating

❖ Resonant ocean thicknesses decrease with shell thickness

Matsuyama et al. 2018



Linear friction Results (𝛼~10-7 s-1)
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Figure 4: Ocean tidal heating power in Enceladus due to eccentricity and obliquity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are thin shell approximation solutions (Beuthe, 2016), and bottom panels show the di↵erence between the two
solutions. Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The shaded gray region
corresponds to the observational constraint of 3.9 � 18.9 GW, and the solid horizontal black line is the estimated
radiogenic heating power (0.3 GW). We assume the interior structure parameters in Table 1.
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Figure 5: Europa’s ocean tidal heating power due to the obliquity and eccentricity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are rescaled surface ocean solutions (Eq. (26)), and bottom panels show the di↵erence between the two solutions.
Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The solid horizontal black line is
the estimated radiogenic heating power (200 GW). We assume the interior structure parameters in Table 1.
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Figure 5: Europa’s ocean tidal heating power due to the obliquity and eccentricity forcing as a function of ocean
thickness for di↵erent shell thicknesses, hs, and linear drag coe�cients, ↵. Solid lines are thick shell solutions, dotted
lines are rescaled surface ocean solutions (Eq. (26)), and bottom panels show the di↵erence between the two solutions.
Dashed lines are surface ocean solutions without an overlying solid shell (hs = 0). The solid horizontal black line is
the estimated radiogenic heating power (200 GW). We assume the interior structure parameters in Table 1.
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❖ Not possible to explain Enceladus’ endogenic power radiated from the south polar terrain (Spencer et al. 2016) 
assuming the shell and ocean thicknesses inferred from gravity and topography data (shell thickness ~20 km, 
ocean thickness ~40 km, Beuthe et al 2016, Hemingway et al. 2017)


❖ Ocean tidal heating is generally weaker than radiogenic heating

❖ Europa: obliquity tidal heating is comparable to radiogenic heating if ocean thickness ~20 km

Matsuyama et al. 2018



Bottom friction Results (cD=4x10-3)

❖ Core density is adjusted to satisfy the mean density constraint 

❖ The effect of an overlying shell is smaller for Europa (due to its small effective rigidity)

❖ Ocean tidal heating is weaker than radiogenic heating (~0.3 GW for Enceladus, ~200 GW for Europa)
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Scaling law solutions from Hay & Matsuyama (2019), 
based  on Chen & Nimmo (2014)



Bottom friction Results (cD=4x10-3)
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❖ Energy dissipation can increase or decrease with shell thickness

❖ Stresses in the shell damp radial displacements

❖ A thicker, deformed shell can generate a larger amplification of the forcing potential, increasing energy dissipation

❖ Eccentricity forcing generates gravity waves with radial displacements

❖ Obliquity forcing generates gravity waves and Rossby waves with no radial displacement
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Enceladus: time-averaged heat flux (linear drag)

❖ Assuming the likely shell and ocean thicknesses inferred from gravity and topography constraints (shell 
thickness = 23 km, ocean thickness = 38 km, Beuthe et al. 2016)


❖ The time-averaged surface distribution of ocean tidal heating is different from that due to dissipation in the solid 
shell


❖ This can lead to unique shell thickness variations if the shell is conductive

Matsuyama et al. 2018

Eccentricity Obliquity



Enceladus: time-averaged heat flux (cD=4x10-3)

❖ Eccentricity and obliquity forcing contributions 
become comparable despite Enceladus’ small 
obliquity

❖ e=0.0047, obliquity=0.00045 deg assuming a 

Cassini state (Chen & Nimmo, 2011; Baland et al. 
2016)


❖ Unique ocean tidal heating pattern

❖ But the dissipation flux is very small

obliquity tides to,

E πρ R R
r

θ υ c˙ (0.4)20 Ω ,obl
W

o
t

o D3 5 3
2
3⎜ ⎟≈ ⎛⎝ ⎞⎠ (28)

where there is now no dependence on ocean thickness. This solution is a
very good approximation to the thick shell results in Fig. 3b because,
for c 0.004,D = the ice shell suppresses the gravity wave contribution for
thick oceans, leaving only the Rossby–Haurwitz wave contribution.

In Eq. (28), the factor υ R r/ t2
3 always increases as the ice shell gets

thicker, and for a 25 km thick shell on Enceladus, υ R r/ 1.7,t2
3 ≈ which

accounts for the estimated 70 % increase in oceanic obliquity tide
heating relative to the free-surface solution shown in Fig. 3b. The in-
crease of υ2 with growing shell thickness is the ultimate cause of this
enhanced obliquity tide heating, which we attribute to the additional
gravitational potential due to ice shell deformation (self-gravity). The
thicker the ice shell, the greater this effect is for a given amount of
deformation.

If the effective viscosity (or drag coefficient) becomes too large,
gravity waves begin to control the solution and Eqs. (26) and (28) be-
come invalid, meaning Eq. (25) must be used instead. Energy dissipa-
tion strongly decreases with shell thickness in this gravity wave regime.
The transition between the Rossby–Haurwitz and gravity wave regimes,
given by the the maxima in Fig. 4b (Chen et al., 2014, Section 3.1),
occurs when r β gh νΩ / 20t n o obl3 3 ≲ (the second term in the denominator of
Eq. (25) becomes large). The ice shell clearly has a strong influence on
this transition because βn increases and rt decreases as the ice shell
thickens (Table 1). The transition also depends on other factors, most
notably the obliquity and drag coefficient, through the effective visc-
osity (Eq. (22)).

6.5. Spatial dissipation

The time- and surface-averaged dissipation results presented so far
represent an important quantity for the thermal and orbital evolution of
Enceladus. Another important aspect of energy dissipation, though, is
how it varies across the ocean-ice shell boundary, because this may
result in observables for future spacecraft. For our nominal drag coef-
ficient of 0.004 and reference Enceladus’ interior model (Beuthe et al.,
2016), Fig. 5 shows the time-averaged dissipated energy flux at the
ocean surface when forced with each tidal component, as well as the
total dynamic tide (Fig. 5c). Here, the total dynamic tide is the sum of
eccentricity (7) and obliquity (8) tides, which is used to directly force
the ocean in ODIS without component splitting, unlike the techniques
of, for example, Tyler (2011), Chen et al. (2014), Beuthe (2016) and
Matsuyama et al. (2018). The magnitudes of the dissipated energy
fluxes in Fig. 5 are very small, but are still useful in understanding how
the dynamical response of the ocean heats the ice shell above.

The top panel (Fig. 5a) shows how eccentricity-forced tides tend to
focus tidal dissipation to very low latitudes, and particularly at the
equator. Both regions of enhanced heating that occur on the leading
and trailing hemispheres have no significant phase lag. The heat flux
here is around 20 times lower than in the remaining two panels. Ob-
liquity-driven tides (Fig. 5b) produce a very simple tidal heating pattern
that is greatest at the poles and steadily decreases towards the equator,
where it is lowest but non-zero.

Time-averaged spatial patterns of ocean tidal dissipation – like those
in Fig. 5a and b – have been shown in Chen et al. (2014),
Matsuyama (2014), and Matsuyama et al. (2018). The third panel in
Fig. 5, which shows the tidal heating pattern where the ocean is forced
with the eccentricity and obliquity tides simultaneously, has not been
considered in previous literature. There are two major points of interest
here. Firstly, the maximum energy flux slightly increases to just over 4

10 8× − mWm ,2− compared to just the obliquity response which is
3.3 10 8∼ × − mWm 2− . Secondly, and most obviously, there is a

significant change in tidal heating pattern from either the eccentricity
or obliquity forced responses. The maximum heat flux is shifted away
from the poles and there is significant asymmetry in both longitude and
latitude.

Such a great change in heating pattern comes from the fact that, for
our reference interior structure model (Beuthe et al., 2016), the ob-
liquity and eccentricity-forced ocean responses are very much com-
parable. As discussed in Section 6.1, the mechanical forcing from the ice
shell has a large effect on Enceladus’ ocean response to eccentricity
forcing, while by comparison, the ocean’s obliquity tide response is
essentially unaffected. It is a coincidence, then, that for a 23 km thick
ice shell, the ocean’s response to eccentricity forcing is reduced enough
that it becomes comparable to the obliquity tide ocean response. Had
we used an ocean thickness of 1 km, then the total dynamic forcing
dissipation pattern would resemble that of the eccentricity forcing be-
cause at that ocean thickness, eccentricity tides dominate (Fig. 3). Al-
ternatively, if the ice shell was considerably thinner, the eccentricity-
forced ocean response would still dominate and again we would see a
tidal heating pattern like that in Fig. 5a. Dissipated tidal energy flux,
given by Eq. (14), is very sensitive to changes in ocean velocity which
helps to create such a dramatic change in tidal heating pattern. For the
case of Enceladus, the ice shell clearly has a significant impact on the
distribution of tidal heating at the ocean surface.

When considering observable features for future spacecraft, Fig. 5c
illustrates the need to consider the total dynamic forcing on the ocean,
because this is what the ocean experiences in reality.

Fig. 5. Time-averaged energy flux due to the eccentricity (a), obliquity (b), and
total dynamic forcing (c) for ocean and shell thicknesses of 38km, 25 km, re-
spectively, on Enceladus assuming c 0.004D = using grid level 6 (∼ 5 km) re-
solution. The last panel was calculated by forcing the ocean directly with the
eccentricity and obliquity tides simultaneously, rather than superimposing the
velocity solutions from either tide. Note that the colour scale in each panel is
not the same.

H.C.F.C. Hay, I. Matsuyama ,FDUXV��������������²��
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Enceladus: dynamic surface displacement phase lag due to 
the delayed ocean response

Eccentricity tide, 𝛂=10-5 s-1

Obliquity tide, 𝛂=10-8 s-1

❖ Phase lag < 2.5 deg 

❖ Amplitude: 

❖ ~13 m (1 km thick shell) 

❖ ~1 m (10 km thick shell)

❖ Phase lag can be as large as 
~20 deg, sensitive to ocean 
thickness 

❖ Amplitude: 

❖ ~6 mm (1 km thick shell) 

❖ ~1 mm (10 km thick shell)
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Figure 10: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Enceladus as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.

In the absence of Rossby-Haurwitz waves, the surface displacement phase lag decreases with increasing

ocean thickness (Figs. 9 and 10, eccentricity tide results). In this case, dynamic e↵ects decrease as the ocean

thickness increases away from the resonant thicknesses, decreasing the phase lag because the tide response

becomes more static. We also verify this for obliquity forcing by removing the westward component of the

obliquity forcing tidal potential (Eq. 5), which prevents the generation of Rossby-Haurwitz waves. The

generation of Rossby-Haurwitz waves by obliquity forcing produces phase lags that are larger than those

produced by eccentricity forcing, and introduces a complex dependence of the phase lag on ocean thickness

(Figs. 9 and 10). For Enceladus, the phase lag is also sensitive to the overlying shell thickness (Fig. 10).

Fig. 9 shows the amplitude and phase lag of the surface displacement on Europa. Assuming the fiducial

shell and ocean thicknesses (hs = 10 km and ho = 100 km) and linear drag coe�cients ↵ < 10�5 s�1, the

amplitude and phase lag are 26.5 m and < 1 degree for eccentricity forcing, and < 2.5 m and < 18 degrees

for obliquity forcing. The larger obliquity phase lags correspond to linear drag coe�cients . 10�7 s�1 and
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Figure 10: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Enceladus as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.

In the absence of Rossby-Haurwitz waves, the surface displacement phase lag decreases with increasing

ocean thickness (Figs. 9 and 10, eccentricity tide results). In this case, dynamic e↵ects decrease as the ocean

thickness increases away from the resonant thicknesses, decreasing the phase lag because the tide response

becomes more static. We also verify this for obliquity forcing by removing the westward component of the

obliquity forcing tidal potential (Eq. 5), which prevents the generation of Rossby-Haurwitz waves. The

generation of Rossby-Haurwitz waves by obliquity forcing produces phase lags that are larger than those

produced by eccentricity forcing, and introduces a complex dependence of the phase lag on ocean thickness

(Figs. 9 and 10). For Enceladus, the phase lag is also sensitive to the overlying shell thickness (Fig. 10).

Fig. 9 shows the amplitude and phase lag of the surface displacement on Europa. Assuming the fiducial

shell and ocean thicknesses (hs = 10 km and ho = 100 km) and linear drag coe�cients ↵ < 10�5 s�1, the

amplitude and phase lag are 26.5 m and < 1 degree for eccentricity forcing, and < 2.5 m and < 18 degrees

for obliquity forcing. The larger obliquity phase lags correspond to linear drag coe�cients . 10�7 s�1 and
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Figure 10: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Enceladus as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.

In the absence of Rossby-Haurwitz waves, the surface displacement phase lag decreases with increasing

ocean thickness (Figs. 9 and 10, eccentricity tide results). In this case, dynamic e↵ects decrease as the ocean

thickness increases away from the resonant thicknesses, decreasing the phase lag because the tide response

becomes more static. We also verify this for obliquity forcing by removing the westward component of the

obliquity forcing tidal potential (Eq. 5), which prevents the generation of Rossby-Haurwitz waves. The

generation of Rossby-Haurwitz waves by obliquity forcing produces phase lags that are larger than those

produced by eccentricity forcing, and introduces a complex dependence of the phase lag on ocean thickness

(Figs. 9 and 10). For Enceladus, the phase lag is also sensitive to the overlying shell thickness (Fig. 10).

Fig. 9 shows the amplitude and phase lag of the surface displacement on Europa. Assuming the fiducial

shell and ocean thicknesses (hs = 10 km and ho = 100 km) and linear drag coe�cients ↵ < 10�5 s�1, the

amplitude and phase lag are 26.5 m and < 1 degree for eccentricity forcing, and < 2.5 m and < 18 degrees

for obliquity forcing. The larger obliquity phase lags correspond to linear drag coe�cients . 10�7 s�1 and
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❖ Phase lag < 7 deg 

❖ Amplitude: ~23 - 27 m

❖ Phase lag can be as large as 
~20 deg, sensitive to ocean 
thickness 

❖ Amplitude: ~1-2 m

Eccentricity tide, 𝛂=10-5 s-1

Obliquity tide, 𝛂=10-8 s-1

Europa: dynamic surface displacement phase lag due to the 
delayed ocean response

linearly with the forcing tidal potential, which in turn scales linearly with eccentricity, e, and obliquity, ✓0

(Eq. 5). Assuming the minimum energy Cassini state values in Table 1, e/✓0 ⇠ 10 and e/✓0 ⇠ 103 for Europa

and Enceladus respectively (note that the obliquities in the forcing potential must be in radians), which is

consistent with the di↵erences in the obliquity and eccentricity surface displacement amplitudes in Figs. 9

and 10. The surface displacement amplitude increases with decreasing shell thickness, as expected due to the

weaker resistance to deformation.
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Figure 9: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Europa as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.
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Figure 10: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Enceladus as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.

In the absence of Rossby-Haurwitz waves, the surface displacement phase lag decreases with increasing

ocean thickness (Figs. 9 and 10, eccentricity tide results). In this case, dynamic e↵ects decrease as the ocean

thickness increases away from the resonant thicknesses, decreasing the phase lag because the tide response

becomes more static. We also verify this for obliquity forcing by removing the westward component of the

obliquity forcing tidal potential (Eq. 5), which prevents the generation of Rossby-Haurwitz waves. The

generation of Rossby-Haurwitz waves by obliquity forcing produces phase lags that are larger than those

produced by eccentricity forcing, and introduces a complex dependence of the phase lag on ocean thickness

(Figs. 9 and 10). For Enceladus, the phase lag is also sensitive to the overlying shell thickness (Fig. 10).

Fig. 9 shows the amplitude and phase lag of the surface displacement on Europa. Assuming the fiducial

shell and ocean thicknesses (hs = 10 km and ho = 100 km) and linear drag coe�cients ↵ < 10�5 s�1, the

amplitude and phase lag are 26.5 m and < 1 degree for eccentricity forcing, and < 2.5 m and < 18 degrees

for obliquity forcing. The larger obliquity phase lags correspond to linear drag coe�cients . 10�7 s�1 and
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linearly with the forcing tidal potential, which in turn scales linearly with eccentricity, e, and obliquity, ✓0

(Eq. 5). Assuming the minimum energy Cassini state values in Table 1, e/✓0 ⇠ 10 and e/✓0 ⇠ 103 for Europa

and Enceladus respectively (note that the obliquities in the forcing potential must be in radians), which is

consistent with the di↵erences in the obliquity and eccentricity surface displacement amplitudes in Figs. 9

and 10. The surface displacement amplitude increases with decreasing shell thickness, as expected due to the

weaker resistance to deformation.
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Figure 9: Surface displacement phase lag and amplitude due to eccentricity and obliquity forcing on Europa as a
function of ocean thickness for di↵erent shell thicknesses and linear drag coe�cients. The phase lag and amplitude are
computed at 0� and 45� latitudes for eccentricity and obliquity forcings respectively, where the amplitude is maximum.
The phase lag is given by �� = ⌦�t, where ⌦ is the rotation rate and �t is the time lag. We assume the interior
structure parameters in Table 1.
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Ocean thickness (km) Ocean thickness (km) Matsuyama et al. 2018



Summary
❖ Ocean tidal heating can be resonantly enhanced but this requires very thin oceans

❖ The shell’s resistance to radial tides increases with shell thickness, reducing tidal heating

❖ The deformed shell’s gravitational potential can enhance tidal heating

❖ Obliquity tidal heating becomes comparable or larger than eccentricity tidal heating when 

the effect of an overlying shell is taken into account

❖ The time-averaged surface distribution of ocean tidal heating is distinct from that due to 

dissipation in the solid shell

❖ The dynamic surface displacement can have phase lags relative to the forcing tidal 

potential due to the delayed ocean response

❖ Measurement of the obliquity phase lag (e.g. by Europa Clipper) would provide a probe 

on ocean thickness

❖ Characterizing the expected horizontal shell thickness variations requires: 


❖ Solving the coupled thermal-orbital evolution problem

❖ Coupling ocean dissipation with shell dissipation (enhanced tidal deformation due to 

dynamic ocean tides would also enhance dissipation in the shell)


